Investigating Transgenic Corn Hybrids as a Method for Mycotoxin Control  

Investigating Transgenic Corn Hybrids as a Method for Mycotoxin Control

在线阅读下载全文

作  者:Hamed K. Abbas Nacer Bellaloui H. Arnold Bruns Hamed K. Abbas;Nacer Bellaloui;H. Arnold Bruns(Biological Control of Pests Research Unit, USDA-ARS, Stoneville, USA;Crop Genetic Research Unit, USDA-ARS, Stoneville, USA;Crop Production Systems Research Unit, USDA-ARS, Stoneville, USA)

机构地区:[1]Biological Control of Pests Research Unit, USDA-ARS, Stoneville, USA [2]Crop Genetic Research Unit, USDA-ARS, Stoneville, USA [3]Crop Production Systems Research Unit, USDA-ARS, Stoneville, USA

出  处:《Food and Nutrition Sciences》2016年第1期44-54,共11页食品与营养科学(英文)

摘  要:Transgenic Bt corn hybrids have been available for more than 10 years and are known to control specific insects. More recently, so-called “stacked-gene” hybrids, have been released with multiple insect resistance genes and genes for herbicide resistance, resulting in up to 6 traits per plant. Because insect damage can lead to increased levels of mycotoxins, such as aflatoxins and fumonisin, we designed a study to compare ten commercially available corn hybrids, two non-transgenic, four with both herbicide and insect tolerance (stacked-gene) and four with glyphosate tolerance only to determine if any hybrid class had the advantage of reduced mycotoxin contamination. The experiment was carried out in the Mississippi State University Delta Research Extension fields in Stoneville, MS for two years in fine sandy loam and clay soil. Rows were either inoculated at the V10 stage of growth with toxigenic Aspergillus flavus K54 (NRRL 58987, isolated from corn kernels in Mississippi), grown on wheat, and applied at a rate of 22.42 kg/ha or allowed to become naturally infected with disease-producing fungi, including various Fusarium and other Aspergillus spp. Mycotoxin production differed according to the soil type with lower levels detected in the hybrids planted in clay soil vs. sandy soil. However, no significant differences in mycotoxin production were found amongst the hybrid classes. More research is needed to identify conditions under which transgenic hybrids might produce higher yields and lower mycotoxin levels. Presently, selection of transgenic hybrids will not replace integrated strategies of biocontrol, host plant resistance, or good crop management practices for achieving adequate mycotoxin control in corn.Transgenic Bt corn hybrids have been available for more than 10 years and are known to control specific insects. More recently, so-called “stacked-gene” hybrids, have been released with multiple insect resistance genes and genes for herbicide resistance, resulting in up to 6 traits per plant. Because insect damage can lead to increased levels of mycotoxins, such as aflatoxins and fumonisin, we designed a study to compare ten commercially available corn hybrids, two non-transgenic, four with both herbicide and insect tolerance (stacked-gene) and four with glyphosate tolerance only to determine if any hybrid class had the advantage of reduced mycotoxin contamination. The experiment was carried out in the Mississippi State University Delta Research Extension fields in Stoneville, MS for two years in fine sandy loam and clay soil. Rows were either inoculated at the V10 stage of growth with toxigenic Aspergillus flavus K54 (NRRL 58987, isolated from corn kernels in Mississippi), grown on wheat, and applied at a rate of 22.42 kg/ha or allowed to become naturally infected with disease-producing fungi, including various Fusarium and other Aspergillus spp. Mycotoxin production differed according to the soil type with lower levels detected in the hybrids planted in clay soil vs. sandy soil. However, no significant differences in mycotoxin production were found amongst the hybrid classes. More research is needed to identify conditions under which transgenic hybrids might produce higher yields and lower mycotoxin levels. Presently, selection of transgenic hybrids will not replace integrated strategies of biocontrol, host plant resistance, or good crop management practices for achieving adequate mycotoxin control in corn.

关 键 词:Stacked-Gene Corn HYBRIDS Soil Type Mycotoxins AFLATOXIN FUMONISIN 

分 类 号:F42[经济管理—产业经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象