An Analytical Solution to Neumann-Type Mixed Boundary Poiseuille Microfluidic Flow in Rectangular Channel Cross-Sections (Slip/No-Slip) including a Numerical Technique to Derive It  

An Analytical Solution to Neumann-Type Mixed Boundary Poiseuille Microfluidic Flow in Rectangular Channel Cross-Sections (Slip/No-Slip) including a Numerical Technique to Derive It

在线阅读下载全文

作  者:Christiane Richter Frederik Kotz N. Keller Tobias M. Nargang Kai Sachsenheimer Dorothea Helmer Bastian E. Rapp 

机构地区:[1]Karlsruhe Institute of Technology (KIT), Istitute of Microstructure Technology (IMT), Eggenstein-Leopoldshafen, Germany

出  处:《Journal of Biomedical Science and Engineering》2017年第5期205-218,共14页生物医学工程(英文)

摘  要:In most microfluidic applications, pressure-driven Poiseuille flow in a contained cross-section with no-slip boundary conditions is the underlying fluid-mechanical model. Solutions for this problem exist for many known cross-sections. We have recently demonstrated a simple method to solve the relevant Poisson equation using a finite difference scheme in a spreadsheet analysis tool such as Microsoft Excel. The numerical solutions obtained from such a spreadsheet are close-to-exact to the analytical solutions with errors on the order of only a few percent. However, there are numerous applications in microfluidics for which the no-slip boundary condition is not valid. Examples include drag-reducing air-retaining surfaces as well as open-channel flow. For these scenarios few to no analytical models exist. In this paper, we derive an analytical model for mixed boundary conditions (slip/no-slip) in two dimensions in a rectangular channel cross-section. We also demonstrate that the equivalent numerical solution can be derived conveniently by adaption of the spreadsheet. In general, mixed boundary-type flow scenarios are especially difficult to solve analytically whereas numerical solutions can be derived using Microsoft Excel within seconds.In most microfluidic applications, pressure-driven Poiseuille flow in a contained cross-section with no-slip boundary conditions is the underlying fluid-mechanical model. Solutions for this problem exist for many known cross-sections. We have recently demonstrated a simple method to solve the relevant Poisson equation using a finite difference scheme in a spreadsheet analysis tool such as Microsoft Excel. The numerical solutions obtained from such a spreadsheet are close-to-exact to the analytical solutions with errors on the order of only a few percent. However, there are numerous applications in microfluidics for which the no-slip boundary condition is not valid. Examples include drag-reducing air-retaining surfaces as well as open-channel flow. For these scenarios few to no analytical models exist. In this paper, we derive an analytical model for mixed boundary conditions (slip/no-slip) in two dimensions in a rectangular channel cross-section. We also demonstrate that the equivalent numerical solution can be derived conveniently by adaption of the spreadsheet. In general, mixed boundary-type flow scenarios are especially difficult to solve analytically whereas numerical solutions can be derived using Microsoft Excel within seconds.

关 键 词:Microfluidics NUMERICS Navier-Stokes Equation SLIP CONDITION NO-SLIP CONDITION 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象