Anaerobic Co-Digestion of Fish Processing Waste with Cow Manure and Waste of Market (Rests of Fruits and Vegetables): A Lab Scale Batch Test  

Anaerobic Co-Digestion of Fish Processing Waste with Cow Manure and Waste of Market (Rests of Fruits and Vegetables): A Lab Scale Batch Test

在线阅读下载全文

作  者:Ndèye Ndickou Kébé Christiane Rieker Papa Abdoulaye Fall Djicknoum Diouf Diène Ndiaye Thomas Mockenhaupt Patrick Beuel Jamile Bursche Ndèye Ndickou Kébé;Christiane Rieker;Papa Abdoulaye Fall;Djicknoum Diouf;Diène Ndiaye;Thomas Mockenhaupt;Patrick Beuel;Jamile Bursche(Laboratory of Electronics, Computer Science, Telecommunications and Renewable Energy, Gaston Berger University, Saint-Louis, Senegal;CIRE (Cologne Institute for Renewable Energy) Bioenergy, University of Apllied Sciences of Cologne TH Köln, Cologne, Germany;Dakar, Senegal)

机构地区:[1]Laboratory of Electronics, Computer Science, Telecommunications and Renewable Energy, Gaston Berger University, Saint-Louis, Senegal [2]CIRE (Cologne Institute for Renewable Energy) Bioenergy, University of Apllied Sciences of Cologne TH Kö ln, Cologne, Germany [3]Dakar, Senegal

出  处:《Journal of Sustainable Bioenergy Systems》2021年第1期45-59,共15页可持续生物质能源系统(英文)

摘  要:<div style="text-align:justify;"> <span style="font-family:Verdana;">The aim of this work was to use fish processing waste (FW) as main substrate for anaerobic digestion. To enhance the biogas production of FW, co-digestion was done with two other substrates: cow dung (CD) and waste of market (MW). Batch test was carried out in an 1</span><span "=""><span style="font-family:Verdana;"> L glass digester in a temperature controlled chamber at 38</span><span style="color:#4F4F4F;font-family:Verdana;">°</span><span style="font-family:Verdana;">C. The following mixtures were carried out: FW with CD respectively at different ratios 100:0% (A), 80:20%</span></span><span "=""> </span><span "="" style="font-family:Verdana;">(B) and 60:40% (C);FW with MW at the following ratio 80:20% (D);FW with CD and MW respectively at these ratios 80:10:10% (F) and 60:20:20% (G). The biogas produced was measured using a milligas counter</span><sup><span style="color:#4F4F4F;"><span style="color:#4F4F4F;font-family:Verdana;">&#174;</span><span style="font-family:Verdana;"></span></span></sup><span "="" style="font-family:Verdana;"> and the volume of gas was recorded. The gas composition was determined using gas chromatography. With a pH stable for raw substrates and mixtures, TS and VS (%TS) contents for FW were respectively 31.01% and 91.55%. Between 3 to 13 days of experimentation, the highest flow rate was observed. The percentage of methane was more important for mixtures B and D, 61% and 59% respectively. pH and VOA/T</span><span "="" style="font-family:Verdana;">IC were stable at the end of the batch test for all mixtures, meaning that the organic matter was already well digested. The highest values of Volatile Solid Removal (VSR) were found for mixtures C, D, F and G. Therefore, the promising mixtures for next experimentations in large scale are B and D.</span> </div><div style="text-align:justify;"> <span style="font-family:Verdana;">The aim of this work was to use fish processing waste (FW) as main substrate for anaerobic digestion. To enhance the biogas production of FW, co-digestion was done with two other substrates: cow dung (CD) and waste of market (MW). Batch test was carried out in an 1</span><span "=""><span style="font-family:Verdana;"> L glass digester in a temperature controlled chamber at 38</span><span style="color:#4F4F4F;font-family:Verdana;">°</span><span style="font-family:Verdana;">C. The following mixtures were carried out: FW with CD respectively at different ratios 100:0% (A), 80:20%</span></span><span "=""> </span><span "="" style="font-family:Verdana;">(B) and 60:40% (C);FW with MW at the following ratio 80:20% (D);FW with CD and MW respectively at these ratios 80:10:10% (F) and 60:20:20% (G). The biogas produced was measured using a milligas counter</span><sup><span style="color:#4F4F4F;"><span style="color:#4F4F4F;font-family:Verdana;">&#174;</span><span style="font-family:Verdana;"></span></span></sup><span "="" style="font-family:Verdana;"> and the volume of gas was recorded. The gas composition was determined using gas chromatography. With a pH stable for raw substrates and mixtures, TS and VS (%TS) contents for FW were respectively 31.01% and 91.55%. Between 3 to 13 days of experimentation, the highest flow rate was observed. The percentage of methane was more important for mixtures B and D, 61% and 59% respectively. pH and VOA/T</span><span "="" style="font-family:Verdana;">IC were stable at the end of the batch test for all mixtures, meaning that the organic matter was already well digested. The highest values of Volatile Solid Removal (VSR) were found for mixtures C, D, F and G. Therefore, the promising mixtures for next experimentations in large scale are B and D.</span> </div>

关 键 词:Fish Waste Batch Test CO-DIGESTION Flow Rate Organic Matter 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象