New Long-Term Climate Oscillations  

New Long-Term Climate Oscillations

在线阅读下载全文

作  者:Joseph J. Smulsky Joseph J. Smulsky(Institute of Earth’s Cryosphere, Tyum. SC of SB RAS, Federal Research Center, Tyumen, Russia)

机构地区:[1]Institute of Earth’s Cryosphere, Tyum. SC of SB RAS, Federal Research Center, Tyumen, Russia

出  处:《Natural Science》2021年第8期354-371,共18页自然科学期刊(英文)

摘  要:The astronomical theory of climate change is based on the solution of differential equations describing Earth’s orbital and rotational motions. The equations are used to calculate the change in insolation over the Earth’s surface. As a result of the author’s solution of the orbital problem, the periods and amplitudes of Earth-orbit variations and their evolution have been refined. Unlike previous studies, the equations of Earth’s rotational motion are solved completely. The Earth’s rotational axis precesses relative to a direction different from the direction of the orbit’s axial precession, and oscillates with periods of half a month, half a year and 18.6 years. Also, its oscillations occur with irregular periods of several tens of thousands of years and more. All these motions lead to oscillations of the obliquity in the range of 14.7° to 32.1°, which prove to be 7 - 8 times larger than obtained by a previous theory. In the same proportion, the Earth’s insolation oscillations increase in amplitude, with insolation extremes occurring in other epochs than those in the previous theory. The amplitudes and the onset times of the extremes correlate with known paleoclimate changes. Thirteen insolation periods of paleoclimate variation over an interval of 200 thousand years are identified. From the insolation evolution calculated over a time interval of 1 million years, 6 climate gradations from very cold to very warm are identified.The astronomical theory of climate change is based on the solution of differential equations describing Earth’s orbital and rotational motions. The equations are used to calculate the change in insolation over the Earth’s surface. As a result of the author’s solution of the orbital problem, the periods and amplitudes of Earth-orbit variations and their evolution have been refined. Unlike previous studies, the equations of Earth’s rotational motion are solved completely. The Earth’s rotational axis precesses relative to a direction different from the direction of the orbit’s axial precession, and oscillates with periods of half a month, half a year and 18.6 years. Also, its oscillations occur with irregular periods of several tens of thousands of years and more. All these motions lead to oscillations of the obliquity in the range of 14.7° to 32.1°, which prove to be 7 - 8 times larger than obtained by a previous theory. In the same proportion, the Earth’s insolation oscillations increase in amplitude, with insolation extremes occurring in other epochs than those in the previous theory. The amplitudes and the onset times of the extremes correlate with known paleoclimate changes. Thirteen insolation periods of paleoclimate variation over an interval of 200 thousand years are identified. From the insolation evolution calculated over a time interval of 1 million years, 6 climate gradations from very cold to very warm are identified.

关 键 词:Earth’s Orbit and Axis Evolution INSOLATION Climate Change Ice Ages 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象