机构地区:[1]Wuhan Institute for Neuroscience and Neuroengineering (WINN), South-Central University for Nationalities, Wuhan, China [2]Department of Neurobiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
出 处:《Natural Science》2021年第9期407-411,共5页自然科学期刊(英文)
摘 要:In recent years, studies have demonstrated that biophoton is a medium for the transmission and processing of neural information. However, such studies were mainly carried out by using brain slices combined with biophoton imaging technology, while there are few reports on <i><span style="font-family:Verdana;">in</span></i><span style="font-family:Verdana;"> <i>vivo</i></span><span style="font-family:Verdana;"> brain biophoton imaging. In this study, the ultraweak biophoton imaging system (UBIS) was employed to carry out an </span><i><span style="font-family:Verdana;">in</span></i><span style="font-family:Verdana;"> <i>vivo</i></span><span style="font-family:Verdana;"> biophoton imaging for the whole brain of mice. It was found that the biophoton emission of whole brain in the slight</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ly</span></span></span></span><span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> anesthetized mice was significantly higher than that of the background, suggesting that the brain of living mouse emits a certain intensity of stable biophotons. The biophoton imaging established in this study for the </span><i><span style="font-family:Verdana;">in</span></i><span style="font-family:Verdana;"> <i>vivo</i></span><span style="font-family:Verdana;"> mouse whole brain may provide a new technical method for further study of the relationship between the biophoton and brain functions, and give new ideas for developing diagnostic method of neuropsychiatric diseases.</span></span></span></span></span>In recent years, studies have demonstrated that biophoton is a medium for the transmission and processing of neural information. However, such studies were mainly carried out by using brain slices combined with biophoton imaging technology, while there are few reports on <i><span style="font-family:Verdana;">in</span></i><span style="font-family:Verdana;"> <i>vivo</i></span><span style="font-family:Verdana;"> brain biophoton imaging. In this study, the ultraweak biophoton imaging system (UBIS) was employed to carry out an </span><i><span style="font-family:Verdana;">in</span></i><span style="font-family:Verdana;"> <i>vivo</i></span><span style="font-family:Verdana;"> biophoton imaging for the whole brain of mice. It was found that the biophoton emission of whole brain in the slight</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ly</span></span></span></span><span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> anesthetized mice was significantly higher than that of the background, suggesting that the brain of living mouse emits a certain intensity of stable biophotons. The biophoton imaging established in this study for the </span><i><span style="font-family:Verdana;">in</span></i><span style="font-family:Verdana;"> <i>vivo</i></span><span style="font-family:Verdana;"> mouse whole brain may provide a new technical method for further study of the relationship between the biophoton and brain functions, and give new ideas for developing diagnostic method of neuropsychiatric diseases.</span></span></span></span></span>
关 键 词:Neural Information Transmission BIOPHOTON UBIS In Vivo Biophoton Imaging Technology
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...