Description of the Nature Using the Models Developed in Euclidean Space  

Description of the Nature Using the Models Developed in Euclidean Space

在线阅读下载全文

作  者:Pavel A. Stabnikov Pavel A. Stabnikov(Institute of Inorganic Chemistry, A. V. Nikolaeva SB RAS, Novosibirsk, Russia)

机构地区:[1]Institute of Inorganic Chemistry, A. V. Nikolaeva SB RAS, Novosibirsk, Russia

出  处:《Natural Science》2022年第2期78-93,共16页自然科学期刊(英文)

摘  要:In elucidating the laws of matter motion, it is necessary also to take into account the subjective human possibilities to think and construct models. These possibilities are restricted to the framework of Euclidean space. No problems could arise during the development of the laws of classical science. However, it was established later on that in some areas it was rather difficult to describe the motion of the matter in terms of Euclidean models. In these cases, researchers either introduce a space of higher dimensionality, use complex numbers, or make some deformations of our habitual Euclidean space. Those were exactly the cases for which the pseudo-Euclidean, Hilbertian, reciprocal, micro-Euclidean and other spaces were proposed. Humans are able to think only in terms of Euclidean space. So, to provide a correct description of unusual motion of matter, the necessity arises to transform the information into the understandable Euclidean space. The operators suitable for these purposes are Lorentz transformations, Schrodinger equation, the integral transformations of Fourier and Weierstrass, etc. The features of information transformations between different spaces are illustrated with the examples from the areas of X-ray structural analysis and quantum physics.In elucidating the laws of matter motion, it is necessary also to take into account the subjective human possibilities to think and construct models. These possibilities are restricted to the framework of Euclidean space. No problems could arise during the development of the laws of classical science. However, it was established later on that in some areas it was rather difficult to describe the motion of the matter in terms of Euclidean models. In these cases, researchers either introduce a space of higher dimensionality, use complex numbers, or make some deformations of our habitual Euclidean space. Those were exactly the cases for which the pseudo-Euclidean, Hilbertian, reciprocal, micro-Euclidean and other spaces were proposed. Humans are able to think only in terms of Euclidean space. So, to provide a correct description of unusual motion of matter, the necessity arises to transform the information into the understandable Euclidean space. The operators suitable for these purposes are Lorentz transformations, Schrodinger equation, the integral transformations of Fourier and Weierstrass, etc. The features of information transformations between different spaces are illustrated with the examples from the areas of X-ray structural analysis and quantum physics.

关 键 词:Modeling in Euclidean Space Direct Inverse Hilbert and Other Spaces Integral Transformations An Increase in the Infinitesimal 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象