检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Subramaniam Pushpavanam Benny Malengier
机构地区:[1]Department of Chemical Engineering, Indian Institute of Technology Madras (IIT Madras), Chennai, India [2]Department of Mathematical Analysis, Ghent University, Ghent, Belgium
出 处:《Advances in Chemical Engineering and Science》2012年第2期309-320,共12页化学工程与科学期刊(英文)
摘 要:Several applications such as liquid-liquid extraction in micro-fluidic devices are concerned with the flow of two immiscible liquid phases. The commonly observed flow regimes in these systems are slug-flow and stratified flow. The latter regime in micro-channels has the inherent advantage that separation of the two liquids at the exit is efficient. Recently extraction in a stratified counter-current flow has been studied experimentally and it has been shown to be more efficient than co-current flow. An analytical as well as a numerical method to determine the steady-state solution of the corresponding convection-diffusion equation for the two flow-fields is presented. It is shown that the counter-current process is superior to the co-current process for the same set of parameters and operating conditions. A simplified model is proposed to analyse the process when diffusion in the transverse direction is not rate limiting. Different approaches to determining mass transfer coefficient are compared. The concept of log mean temperature difference used in design of heat exchangers is extended to describe mass transfer in the system.Several applications such as liquid-liquid extraction in micro-fluidic devices are concerned with the flow of two immiscible liquid phases. The commonly observed flow regimes in these systems are slug-flow and stratified flow. The latter regime in micro-channels has the inherent advantage that separation of the two liquids at the exit is efficient. Recently extraction in a stratified counter-current flow has been studied experimentally and it has been shown to be more efficient than co-current flow. An analytical as well as a numerical method to determine the steady-state solution of the corresponding convection-diffusion equation for the two flow-fields is presented. It is shown that the counter-current process is superior to the co-current process for the same set of parameters and operating conditions. A simplified model is proposed to analyse the process when diffusion in the transverse direction is not rate limiting. Different approaches to determining mass transfer coefficient are compared. The concept of log mean temperature difference used in design of heat exchangers is extended to describe mass transfer in the system.
关 键 词:PLUG Flow DIFFUSION Extraction CO-CURRENT COUNTER-CURRENT
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49