Preparation and Study of Carbide-SiAlON Composite in SiC-SiAlON-Al2O3 Syste  

Preparation and Study of Carbide-SiAlON Composite in SiC-SiAlON-Al2O3 Syste

在线阅读下载全文

作  者:Zviad Kovziridze Natela Nizharadze Gulnazi Tabatadze Marina Kapanadze Nazi Kutsiava Tsira Danelia Nino Darakhvelidze Maia Balakhashvili Salome Gvazava Zviad Kovziridze;Natela Nizharadze;Gulnazi Tabatadze;Marina Kapanadze;Nazi Kutsiava;Tsira Danelia;Nino Darakhvelidze;Maia Balakhashvili;Salome Gvazava(Institute of Bionanoceramics and Nanocomposites Technology, Georgian Technical University, Tbilisi, Georgia)

机构地区:[1]Institute of Bionanoceramics and Nanocomposites Technology, Georgian Technical University, Tbilisi, Georgia

出  处:《Advances in Materials Physics and Chemistry》2023年第5期59-76,共18页材料物理与化学进展(英文)

摘  要:Goal: Synthesis of SiAlON by reaction coating method using aluminosilicate natural raw material geopolymer (kaolin), corundum and silicon carbide and on its basis obtaining a composite with high physical and technical properties by hot pressing for use in armor and rocket technology. For the intensification of SiAlON formation and sintering processes, the influence of various additives was studied, such as: aluminum powder, elemental silicon, yttrium and magnesium oxides. Method: A SiAlON-containing composite with an open porosity of 15% - 16% was obtained by the metallothermic process and the method of reactive annealing in nitrogen. The resulting material was milled to a dispersion of 1 - 3 μm and hot pressed at 1620°C to obtain a product with high density and performance properties. We studied the process of SiAlON formation and the microstructure of the composite by X-ray phase, optical and electronmicroscopy analysis methods. Result: In the selected composition the β-SiAlON was formed at 1400°C instead of 1800°C, which was due to the mutual influence of the initial raw materials: geopolymer kaolin, perlite, corundum, aluminum, silicon, SiC, the development of the process is facilitated by the vitreous dopant perlite (96 glass phase). The use of perlite, which is eutectic with geopolymer at low temperatures, creates a good prerequisite for intensive diffusion processes with other components. Conclusion: A SiAlON-containing composite with high physical and technical properties was obtained in the SiC-SiAlON-Al<sub>2</sub>O<sub>3</sub> system by the method of reactive sintering and hot pressing, with the following properties: the strength limit in compression is 1940 MPa, and in bending it is 490 MPa. The process of making SiAlON has been studied using X-ray phase and electron microscopy analysis methods. The physical and technical properties of the obtained composite are studied by modern research methods.Goal: Synthesis of SiAlON by reaction coating method using aluminosilicate natural raw material geopolymer (kaolin), corundum and silicon carbide and on its basis obtaining a composite with high physical and technical properties by hot pressing for use in armor and rocket technology. For the intensification of SiAlON formation and sintering processes, the influence of various additives was studied, such as: aluminum powder, elemental silicon, yttrium and magnesium oxides. Method: A SiAlON-containing composite with an open porosity of 15% - 16% was obtained by the metallothermic process and the method of reactive annealing in nitrogen. The resulting material was milled to a dispersion of 1 - 3 μm and hot pressed at 1620°C to obtain a product with high density and performance properties. We studied the process of SiAlON formation and the microstructure of the composite by X-ray phase, optical and electronmicroscopy analysis methods. Result: In the selected composition the β-SiAlON was formed at 1400°C instead of 1800°C, which was due to the mutual influence of the initial raw materials: geopolymer kaolin, perlite, corundum, aluminum, silicon, SiC, the development of the process is facilitated by the vitreous dopant perlite (96 glass phase). The use of perlite, which is eutectic with geopolymer at low temperatures, creates a good prerequisite for intensive diffusion processes with other components. Conclusion: A SiAlON-containing composite with high physical and technical properties was obtained in the SiC-SiAlON-Al<sub>2</sub>O<sub>3</sub> system by the method of reactive sintering and hot pressing, with the following properties: the strength limit in compression is 1940 MPa, and in bending it is 490 MPa. The process of making SiAlON has been studied using X-ray phase and electron microscopy analysis methods. The physical and technical properties of the obtained composite are studied by modern research methods.

关 键 词:SIALON COMPOSITE Hot Pressing MICROSTRUCTURE Phase Composition 

分 类 号:TQ1[化学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象