检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Nguyen M. Cuong Shoji Ishizaka Noboru Kitamura
机构地区:[1]Department of Chemical Sciences and Engineering, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan [2]Department of Chemistry, Graduate School of Science, Hiroshima University, Higashihiroshima-City, Japan [3]Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Japan
出 处:《American Journal of Analytical Chemistry》2012年第3期188-194,共7页美国分析化学(英文)
摘 要:A laser trapping-microspectroscopy technique combined with excitation energy transfer from a fluorescent cationic dye (Rhodamine B, RB+) to a non-fluorescent cationic dye (Malachite Green, MG+) was employed to study pH effects on the diffusion coefficients of MG+ (D(MG+)) in single cation-exchange resin microparticles with the diameters of 16 μm. When RB+-pre-adsorbed resin particles were soaked in an aqueous MG+ solution, the RB+ fluorescence was quenched gradually with the soaking time. The time course of the quenching efficiency of RB+ by MG+ was then used to evaluate the D(MG+) value in the particle. The D(MG+) value increased from 1.1 × 10-11 to 4.3 × 10-11 cm2.s–1 on going the solu- tion pH value from 9 to 4. The results were explained reasonably by a Donnan electric potential model.A laser trapping-microspectroscopy technique combined with excitation energy transfer from a fluorescent cationic dye (Rhodamine B, RB+) to a non-fluorescent cationic dye (Malachite Green, MG+) was employed to study pH effects on the diffusion coefficients of MG+ (D(MG+)) in single cation-exchange resin microparticles with the diameters of 16 μm. When RB+-pre-adsorbed resin particles were soaked in an aqueous MG+ solution, the RB+ fluorescence was quenched gradually with the soaking time. The time course of the quenching efficiency of RB+ by MG+ was then used to evaluate the D(MG+) value in the particle. The D(MG+) value increased from 1.1 × 10-11 to 4.3 × 10-11 cm2.s–1 on going the solu- tion pH value from 9 to 4. The results were explained reasonably by a Donnan electric potential model.
关 键 词:Donnan Electric Potential Intraparticle Diffusion CATION-EXCHANGE Reaction SINGLE MICROPARTICLE Laser Trapping-Microspectroscopy
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222