Donnan Electric Potential Dependence of Intraparticle Diffusion of Malachite Green in Single Cation Exchange Resin Particles: A Laser Trapping-Microspectroscopy Study  

Donnan Electric Potential Dependence of Intraparticle Diffusion of Malachite Green in Single Cation Exchange Resin Particles: A Laser Trapping-Microspectroscopy Study

在线阅读下载全文

作  者:Nguyen M. Cuong Shoji Ishizaka Noboru Kitamura 

机构地区:[1]Department of Chemical Sciences and Engineering, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan [2]Department of Chemistry, Graduate School of Science, Hiroshima University, Higashihiroshima-City, Japan [3]Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Japan

出  处:《American Journal of Analytical Chemistry》2012年第3期188-194,共7页美国分析化学(英文)

摘  要:A laser trapping-microspectroscopy technique combined with excitation energy transfer from a fluorescent cationic dye (Rhodamine B, RB+) to a non-fluorescent cationic dye (Malachite Green, MG+) was employed to study pH effects on the diffusion coefficients of MG+ (D(MG+)) in single cation-exchange resin microparticles with the diameters of 16 μm. When RB+-pre-adsorbed resin particles were soaked in an aqueous MG+ solution, the RB+ fluorescence was quenched gradually with the soaking time. The time course of the quenching efficiency of RB+ by MG+ was then used to evaluate the D(MG+) value in the particle. The D(MG+) value increased from 1.1 × 10-11 to 4.3 × 10-11 cm2.s–1 on going the solu- tion pH value from 9 to 4. The results were explained reasonably by a Donnan electric potential model.A laser trapping-microspectroscopy technique combined with excitation energy transfer from a fluorescent cationic dye (Rhodamine B, RB+) to a non-fluorescent cationic dye (Malachite Green, MG+) was employed to study pH effects on the diffusion coefficients of MG+ (D(MG+)) in single cation-exchange resin microparticles with the diameters of 16 μm. When RB+-pre-adsorbed resin particles were soaked in an aqueous MG+ solution, the RB+ fluorescence was quenched gradually with the soaking time. The time course of the quenching efficiency of RB+ by MG+ was then used to evaluate the D(MG+) value in the particle. The D(MG+) value increased from 1.1 × 10-11 to 4.3 × 10-11 cm2.s–1 on going the solu- tion pH value from 9 to 4. The results were explained reasonably by a Donnan electric potential model.

关 键 词:Donnan Electric Potential Intraparticle Diffusion CATION-EXCHANGE Reaction SINGLE MICROPARTICLE Laser Trapping-Microspectroscopy 

分 类 号:O6[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象