Optimization Conditions of the Preparation of Activated Carbon Based Egusi (<i>Cucumeropsis mannii</i>Naudin) Seed Shells for Nitrate Ions Removal from Wastewater  被引量:2

Optimization Conditions of the Preparation of Activated Carbon Based Egusi (<i>Cucumeropsis mannii</i>Naudin) Seed Shells for Nitrate Ions Removal from Wastewater

在线阅读下载全文

作  者:René Blaise Ngouateu Lékéné Julius Ndi Nsami Asma Rauf Daouda Kouotou Placide Desiré Belibi Belibi Muhammad Iqbal Bhanger Joseph Ketcha Mbadcam 

机构地区:[1]Applied Physical and Analytical Chemistry Laboratory, Department of Inorganic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon [2]H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan

出  处:《American Journal of Analytical Chemistry》2018年第10期439-463,共25页美国分析化学(英文)

摘  要:Egusi seed shells (ESS) were used as precursor for the preparation of two activated carbons (ACs) following H3PO4 and ZnCl2 activation. The effect of factors controlling the preparation of ACs such as chemical activating agent concentration (2 - 10 M), activation temperature (400°C - 700°C) and residence time (30 - 120 min) were optimized using the Box-Behnken Design (BBD). The optimized activated carbons based H3PO4 (ACP) and ZnCl2 (ACZ) were characterized by N2 adsorption, elemental analysis, atomic force microscopy (AFM), Boehm titration and Fourier transformed infrared (FTIR) techniques. The specific surface area was found to be 1053.91 and 1009.89 m2·g-1 for ACP and ACZ respectively. The adsorbents had similar surface functionalities and were both microporous. The effect of various parameters such as initial pH, concentration, and contact time on the adsorption of nitrate ions on ACP and ACZ in aqueous solution was studied. ACZ demonstrated better adsorption capacity (8.26 mg·g-1) compared to ACP (5.65 mg·g-1) at the same equilibrium time of 20 min. The adsorption process was governed by a “physical interactions” phenomenon for both adsorbents.Egusi seed shells (ESS) were used as precursor for the preparation of two activated carbons (ACs) following H3PO4 and ZnCl2 activation. The effect of factors controlling the preparation of ACs such as chemical activating agent concentration (2 - 10 M), activation temperature (400°C - 700°C) and residence time (30 - 120 min) were optimized using the Box-Behnken Design (BBD). The optimized activated carbons based H3PO4 (ACP) and ZnCl2 (ACZ) were characterized by N2 adsorption, elemental analysis, atomic force microscopy (AFM), Boehm titration and Fourier transformed infrared (FTIR) techniques. The specific surface area was found to be 1053.91 and 1009.89 m2·g-1 for ACP and ACZ respectively. The adsorbents had similar surface functionalities and were both microporous. The effect of various parameters such as initial pH, concentration, and contact time on the adsorption of nitrate ions on ACP and ACZ in aqueous solution was studied. ACZ demonstrated better adsorption capacity (8.26 mg·g-1) compared to ACP (5.65 mg·g-1) at the same equilibrium time of 20 min. The adsorption process was governed by a “physical interactions” phenomenon for both adsorbents.

关 键 词:Egusi Seed SHELLS Activated Carbon Optimization Nitrate Ions WASTEWATER Adsorption Process 

分 类 号:O6[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象