Synthesis and Characterization of Nano-Acetamiprid—New Plant Safeguard Nanomaterial  被引量:1

Synthesis and Characterization of Nano-Acetamiprid—New Plant Safeguard Nanomaterial

在线阅读下载全文

作  者:P. Padmavathi N. Vasundhara Swathi Kovvuri N. V. S. Venugopal 

机构地区:[1]Department of Chemistry, Institute of Science, GITAM University, Visakhapatnam, India

出  处:《American Journal of Analytical Chemistry》2020年第5期197-204,共8页美国分析化学(英文)

摘  要:In present days many types of materials are used to reduce the environmental pollution in the world which includes nanomaterials. Nanopesticides increase the efficacy, durability and reduction in the amount of active constituent. The potential applications of nanotechnology in pesticides are quick decomposition in soil or plant, targeted delivery, apparent solubility and controlled release. In this communication the author reported a neonicatonoid insecticide called as Nano-acetamiprid and it is widely used to control fungal infections in different crops like cotton, leafy vegetables, citrus fruits, pome etc. The author reported a facile method i.e. a new Nano-acetamiprid for plant disease control and its subsequent characterization of encapsulated complex using polycaprolactone as an encapsulated agent. Nano-acetamiprid encapsulated particles were characterized by dynamic light scattering (DLS), ultraviolet spectroscopy and scanning electron microscopy (SEM). To ascertain the formation and the stability of nanoencapsulated acetamiprid pesticide, the maximum absorption spectra formulated at 421 nm and unformulated pesticide at 520 nm were observed. The size distribution was noted at 40 - 50 nm. The bioactivity study was conducted against various Aspergillus niger. The performance of nano particles was many fold times effective when compared to the original parental particles. The bio-assay of Nano-acetamiprid shows better results when compared to the normal commercial acetamiprid.In present days many types of materials are used to reduce the environmental pollution in the world which includes nanomaterials. Nanopesticides increase the efficacy, durability and reduction in the amount of active constituent. The potential applications of nanotechnology in pesticides are quick decomposition in soil or plant, targeted delivery, apparent solubility and controlled release. In this communication the author reported a neonicatonoid insecticide called as Nano-acetamiprid and it is widely used to control fungal infections in different crops like cotton, leafy vegetables, citrus fruits, pome etc. The author reported a facile method i.e. a new Nano-acetamiprid for plant disease control and its subsequent characterization of encapsulated complex using polycaprolactone as an encapsulated agent. Nano-acetamiprid encapsulated particles were characterized by dynamic light scattering (DLS), ultraviolet spectroscopy and scanning electron microscopy (SEM). To ascertain the formation and the stability of nanoencapsulated acetamiprid pesticide, the maximum absorption spectra formulated at 421 nm and unformulated pesticide at 520 nm were observed. The size distribution was noted at 40 - 50 nm. The bioactivity study was conducted against various Aspergillus niger. The performance of nano particles was many fold times effective when compared to the original parental particles. The bio-assay of Nano-acetamiprid shows better results when compared to the normal commercial acetamiprid.

关 键 词:ACETAMIPRID NANO Encapsulation POLYCAPROLACTONE ANTIFUNGAL Studies 

分 类 号:O62[理学—有机化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象