机构地区:[1]Faculty of Science, Department of Chemistry, University of Buea, Buea, Cameroon [2]National School of Agro-Industrial Sciences, Department of Applied Chemistry, University of Ngaoundere, Ngaoundere, Cameroon
出 处:《Journal of Materials Science and Chemical Engineering》2023年第8期43-60,共36页材料科学与化学工程(英文)
摘 要:The objective of this work was to elaborate ceramic water filters from Kaolinite (Cameroon) clay for the elimination of suspended particles from domestic drinking water. In Sub-Sahara Africa and in Cameroon in particular health issues have been linked to the consummation of domestic tap water of high turbidity values both in the rural and urban areas. In order to remedy these problems, ceramic water pot filters have been elaborated in a pilot scale unit with aim of putting in place a unit production. The chemical composition, the thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analyses of the raw materials (clay and rice husks) was determined. The crystal phases and scanning electron microscope of Wack clay was also determined. The ceramic pot filter membranes were fabricated from the formulations 70/20/10 of clay/porogen/chamotte respectively with the particle size of the raw material less than or equal to 500 μm. The formulated ceramic pot filters were then sintered at 900˚C in a furnace. These ceramic pot filters were characterized by determining their porosity, withdrawal percentages, water permeability, mechanical and chemical resistance. The study of the efficiency consisted in evaluating the retention rate and permeate flux with respect to time (days) with synthetic water suspensions of turbidity 100 NTU and particle size of 2 μm. The ceramic pot filters were made aiming at studying the efficiency after physical defouling of filters. Physical defouling consisted in brushing the inner surface of the ceramic pot filters with water and drying them at ambient temperature after being used for 11 days and reusing them under the same initial conditions. The produced ceramic pot filter had a volume of 4 L, an average porosity of 36.15%, shrinkage in mass or withdrawal percentage of 18.23%, a water permeability of 59.6 × 10<sup>3</sup> L∙h<sup>−2</sup>∙m<sup>−</sup><sup>2</sup>, mechanical resistance of 6.8 MPa and corrosion resistance of 1.6% in acidic medium and 0.8% in alThe objective of this work was to elaborate ceramic water filters from Kaolinite (Cameroon) clay for the elimination of suspended particles from domestic drinking water. In Sub-Sahara Africa and in Cameroon in particular health issues have been linked to the consummation of domestic tap water of high turbidity values both in the rural and urban areas. In order to remedy these problems, ceramic water pot filters have been elaborated in a pilot scale unit with aim of putting in place a unit production. The chemical composition, the thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analyses of the raw materials (clay and rice husks) was determined. The crystal phases and scanning electron microscope of Wack clay was also determined. The ceramic pot filter membranes were fabricated from the formulations 70/20/10 of clay/porogen/chamotte respectively with the particle size of the raw material less than or equal to 500 μm. The formulated ceramic pot filters were then sintered at 900˚C in a furnace. These ceramic pot filters were characterized by determining their porosity, withdrawal percentages, water permeability, mechanical and chemical resistance. The study of the efficiency consisted in evaluating the retention rate and permeate flux with respect to time (days) with synthetic water suspensions of turbidity 100 NTU and particle size of 2 μm. The ceramic pot filters were made aiming at studying the efficiency after physical defouling of filters. Physical defouling consisted in brushing the inner surface of the ceramic pot filters with water and drying them at ambient temperature after being used for 11 days and reusing them under the same initial conditions. The produced ceramic pot filter had a volume of 4 L, an average porosity of 36.15%, shrinkage in mass or withdrawal percentage of 18.23%, a water permeability of 59.6 × 10<sup>3</sup> L∙h<sup>−2</sup>∙m<sup>−</sup><sup>2</sup>, mechanical resistance of 6.8 MPa and corrosion resistance of 1.6% in acidic medium and 0.8% in al
关 键 词:Ceramic Pot Filter Retention Rate Flux Defouling Formulation Production Cost
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...