Study of Hydrophobic Nature of Fullerene-Based Poly (Methyl Hydro Siloxane) and Polyacrylonitrile Interpenetrating Polymer Network  

Study of Hydrophobic Nature of Fullerene-Based Poly (Methyl Hydro Siloxane) and Polyacrylonitrile Interpenetrating Polymer Network

在线阅读下载全文

作  者:Mohd. Meraj Jafri Meet Kamal Subhash Mandal Sanjay Kanojia Mohd. Meraj Jafri;Meet Kamal;Subhash Mandal;Sanjay Kanojia(Department of Chemistry, C.S.J.M. University, Kanpur, India;Department of Chemistry, Christ Church Degree College., Kanpur, India;Nano Science and Coating Division, DMSRDE (DRDO), Kanpur, India)

机构地区:[1]Department of Chemistry, C.S.J.M. University, Kanpur, India [2]Department of Chemistry, Christ Church Degree College., Kanpur, India [3]Nano Science and Coating Division, DMSRDE (DRDO), Kanpur, India

出  处:《Journal of Materials Science and Chemical Engineering》2023年第11期15-27,共13页材料科学与化学工程(英文)

摘  要:In this study, the effect of combining different molecular domains on single platform has been reported that revealed a proper packing and interpenetration of fullerene spheres with the monomeric species. The fabricated IPN system exhibits hydrophobic behavior in nature. An interpenetrating polymer network (IPN) of fullerene-based poly (methyl hydro siloxane) (PMHS) and polyacrylonitrile (PAN) was prepared. The synthesized polymer network was characterized using infrared (IR) spectroscopy, differential scanning calorimetric analysis (DSC), and scanning electron microscopic (SEM) technique. The IPN was analyzed by IR spectroscopy, which depicts presence of fullerene at 500 cm<sup>−1</sup> and 1632 cm<sup>−1</sup>, presence of PHMS at 1050 cm<sup>−1</sup>, 1250 cm<sup>−1</sup>, 2225 cm<sup>−1</sup>, and 3000 cm<sup>−1</sup> and presence of PAN at 3077 cm<sup>−1</sup>, 1299 cm<sup>−1</sup>, 1408 cm<sup>−1</sup> and 2083 cm<sup>−1</sup>. Shifting in band positions indicated the interpenetration of the reacting species. DSC endotherm showed crystalline peak (T<sub>c</sub>) at 117˚C, which indicated the crystalline nature of the synthesized IPN. The absence of T<sub>g</sub> peak and clear observable T<sub>c</sub> peak revealed crystalline behavior of polymeric network. The microstructure of the polymer network was observed by SEM technique, which revealed transparent and dual-phase morphology of the IPN surface. The fluorescent emission spectra of polymeric network were recorded on a spectrofluorometer which revealed fluorescent excitation and emission spectra of the IPN. The Emission spectra generated by radiative decay of excitations exhibit a maximal peak at 450 nm, suggesting that the synthesized IPN nanosheets were typically high-intensity blue light emitting materials. The FTIR investigations revealed multiple non-covalent interactions achieved by polymerization with physical anchoring on the polymeric network surfaces. Such interactions can be recognized as the driving force for the fabricatIn this study, the effect of combining different molecular domains on single platform has been reported that revealed a proper packing and interpenetration of fullerene spheres with the monomeric species. The fabricated IPN system exhibits hydrophobic behavior in nature. An interpenetrating polymer network (IPN) of fullerene-based poly (methyl hydro siloxane) (PMHS) and polyacrylonitrile (PAN) was prepared. The synthesized polymer network was characterized using infrared (IR) spectroscopy, differential scanning calorimetric analysis (DSC), and scanning electron microscopic (SEM) technique. The IPN was analyzed by IR spectroscopy, which depicts presence of fullerene at 500 cm<sup>−1</sup> and 1632 cm<sup>−1</sup>, presence of PHMS at 1050 cm<sup>−1</sup>, 1250 cm<sup>−1</sup>, 2225 cm<sup>−1</sup>, and 3000 cm<sup>−1</sup> and presence of PAN at 3077 cm<sup>−1</sup>, 1299 cm<sup>−1</sup>, 1408 cm<sup>−1</sup> and 2083 cm<sup>−1</sup>. Shifting in band positions indicated the interpenetration of the reacting species. DSC endotherm showed crystalline peak (T<sub>c</sub>) at 117˚C, which indicated the crystalline nature of the synthesized IPN. The absence of T<sub>g</sub> peak and clear observable T<sub>c</sub> peak revealed crystalline behavior of polymeric network. The microstructure of the polymer network was observed by SEM technique, which revealed transparent and dual-phase morphology of the IPN surface. The fluorescent emission spectra of polymeric network were recorded on a spectrofluorometer which revealed fluorescent excitation and emission spectra of the IPN. The Emission spectra generated by radiative decay of excitations exhibit a maximal peak at 450 nm, suggesting that the synthesized IPN nanosheets were typically high-intensity blue light emitting materials. The FTIR investigations revealed multiple non-covalent interactions achieved by polymerization with physical anchoring on the polymeric network surfaces. Such interactions can be recognized as the driving force for the fabricat

关 键 词:POLYACRYLONITRILE PMHS IPN Polymeric Network 

分 类 号:O63[理学—高分子化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象