A Comparison of Hydrothermal Aging, SO2 and Propene Poisoning Effects on NH3-SCR over Cu-ZSM-5 and Cu-SAPO-34 Catalysts  

A Comparison of Hydrothermal Aging, SO2 and Propene Poisoning Effects on NH3-SCR over Cu-ZSM-5 and Cu-SAPO-34 Catalysts

在线阅读下载全文

作  者:Kouadio Brou Albert Koffi Konan Martin Zran Van Eric-Simon Horo Kone Kouadio Brou Albert;Koffi Konan Martin;Zran Van Eric-Simon;Horo Kone(Unité, de Formation et de Recherche des Sciences et de Technologies (UFR ST), Université, Alassane Ouattara, Bouaké, Cô,te d’,Ivoire;Unité, de Formation et de Recherche Environnement (UFR E), Université, Jean Lorougnon Gué,dé, Daloa, Cô,te d’,Ivoire;Unité, de Formation et de Recherche des Sciences des Structures, de la Matiè,re et de Technologie (UFR SSMT), Abidjan, Cô,te d’,Ivoire)

机构地区:[1]Unité, de Formation et de Recherche des Sciences et de Technologies (UFR ST), Université, Alassane Ouattara, Bouaké, Cô,te d’,Ivoire [2]Unité, de Formation et de Recherche Environnement (UFR E), Université, Jean Lorougnon Gué,dé, Daloa, Cô,te d’,Ivoire [3]Unité, de Formation et de Recherche des Sciences des Structures, de la Matiè,re et de Technologie (UFR SSMT), Abidjan, Cô,te d’,Ivoire

出  处:《Journal of Materials Science and Chemical Engineering》2024年第5期10-28,共19页材料科学与化学工程(英文)

摘  要:This study was aimed to investigate the effects of hydrothermal aging, propene and SO<sub>2</sub> poisoning on the ammonia-selective catalytic reduction (NH<sub>3</sub>-SCR) performance of both Cu-SAPO-34 and Cu-ZSM-5. The catalytic activities of fresh, aged and poisoned samples were tested in ammonia-selective catalytic reduction (NH<sub>3</sub>-SCR) of NO<sub>x</sub> conditions. The XRD, TG and N<sub>2</sub>-desorption results showed that the structures of the Cu-SAPO-34 and Cu-ZSM-5 remained intact after 750˚C hydrothermally aged, SO<sub>2</sub> and propene poisoned. After hydrothermal aging at 750˚C for 12 h, the NO reduction performance of Cu-ZSM-5 was significantly reduced at lower temperatures, while that of Cu-SAPO-34 was less affected. Moreover, Cu-SAPO-34 catalyst showed high NO conversion with SO<sub>2</sub> or propene compared to Cu-ZSM-5. However, Cu-ZSM-5 showed a larger drop in catalytic activity with SO<sub>2</sub> or propene compared to Cu-SAPO-34 catalyst. The H<sub>2</sub>-TPR results showed that Cu<sup>2 </sup> ions could be reduced to Cu<sup> </sup> and Cu<sup>0</sup> for Cu-ZSM-5, while no significant transformation of copper species was observed for Cu-SAPO-34. Meanwhile, the UV-vis DRS results showed that CuO species were formed in Cu-ZSM-5, while little changes were observed for the Cu-SAPO-34. Cu-SAPO-34 showed high sulfur and hydrocarbon poison resistance compared to Cu-ZSM-5. In summary, Cu-SAPO-34 with small-pore zeolite showed higher hydrothermal stability and better hydrocarbon and sulfur poison resistant than Cu-ZSM-5 with medium-pore.This study was aimed to investigate the effects of hydrothermal aging, propene and SO<sub>2</sub> poisoning on the ammonia-selective catalytic reduction (NH<sub>3</sub>-SCR) performance of both Cu-SAPO-34 and Cu-ZSM-5. The catalytic activities of fresh, aged and poisoned samples were tested in ammonia-selective catalytic reduction (NH<sub>3</sub>-SCR) of NO<sub>x</sub> conditions. The XRD, TG and N<sub>2</sub>-desorption results showed that the structures of the Cu-SAPO-34 and Cu-ZSM-5 remained intact after 750˚C hydrothermally aged, SO<sub>2</sub> and propene poisoned. After hydrothermal aging at 750˚C for 12 h, the NO reduction performance of Cu-ZSM-5 was significantly reduced at lower temperatures, while that of Cu-SAPO-34 was less affected. Moreover, Cu-SAPO-34 catalyst showed high NO conversion with SO<sub>2</sub> or propene compared to Cu-ZSM-5. However, Cu-ZSM-5 showed a larger drop in catalytic activity with SO<sub>2</sub> or propene compared to Cu-SAPO-34 catalyst. The H<sub>2</sub>-TPR results showed that Cu<sup>2 </sup> ions could be reduced to Cu<sup> </sup> and Cu<sup>0</sup> for Cu-ZSM-5, while no significant transformation of copper species was observed for Cu-SAPO-34. Meanwhile, the UV-vis DRS results showed that CuO species were formed in Cu-ZSM-5, while little changes were observed for the Cu-SAPO-34. Cu-SAPO-34 showed high sulfur and hydrocarbon poison resistance compared to Cu-ZSM-5. In summary, Cu-SAPO-34 with small-pore zeolite showed higher hydrothermal stability and better hydrocarbon and sulfur poison resistant than Cu-ZSM-5 with medium-pore.

关 键 词:Hydrothermal Aging Propene and SO2Poisoning Ammonia-Selective Catalytic Reduction(NH3-SCR) Cu-SAPO-34 CU-ZSM-5 

分 类 号:O64[理学—物理化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象