检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Olaniyi Fakolujo Ali Merati Mariusz Bielawski Manon Bolduc Michel Nganbe Olaniyi Fakolujo;Ali Merati;Mariusz Bielawski;Manon Bolduc;Michel Nganbe(University of Ottawa, Ottawa, Canada;National Research Council Canada, NRC Aerospace, Ottawa, Canada;Defence R&D Canada (DRDC Valcartier), Quebec, Canada)
机构地区:[1]University of Ottawa, Ottawa, Canada [2]National Research Council Canada, NRC Aerospace, Ottawa, Canada [3]Defence R&D Canada (DRDC Valcartier), Quebec, Canada
出 处:《Journal of Minerals and Materials Characterization and Engineering》2016年第1期87-102,共16页矿物质和材料特性和工程(英文)
摘 要:Ceramics constitute an integral part of highly efficient armours due to their low density, high hardness, strength and stiffness. However, they lack toughness and multi-hit capability. Therefore, zirconia toughened alumina is investigated. The hardness is evaluated using Vickers, Knoop and instrumented indentations, while the fracture toughness is evaluated using the indentation technique and Charpy tests. The strength is evaluated using ring-on-ring, four point bend and drop weight tests. The Young’s modulus is evaluated using the unloading instrumented indentation curves. Microstructure, porosity and density are characterised using ultrasonic scanning, Archimedes principle, optical and scanning electron microscopy. Results show an indentation size effect on all mechanical properties. A substantial improvement in toughness is achieved through retardation of crack initiation by tetragonal-to-monoclinic phase transformation in zirconia particles, crack deviation thanks to appropriate grain structure, as well as energy absorption by densification due to remaining porosity. This improved toughness is expected to promote multi-hit capability.Ceramics constitute an integral part of highly efficient armours due to their low density, high hardness, strength and stiffness. However, they lack toughness and multi-hit capability. Therefore, zirconia toughened alumina is investigated. The hardness is evaluated using Vickers, Knoop and instrumented indentations, while the fracture toughness is evaluated using the indentation technique and Charpy tests. The strength is evaluated using ring-on-ring, four point bend and drop weight tests. The Young’s modulus is evaluated using the unloading instrumented indentation curves. Microstructure, porosity and density are characterised using ultrasonic scanning, Archimedes principle, optical and scanning electron microscopy. Results show an indentation size effect on all mechanical properties. A substantial improvement in toughness is achieved through retardation of crack initiation by tetragonal-to-monoclinic phase transformation in zirconia particles, crack deviation thanks to appropriate grain structure, as well as energy absorption by densification due to remaining porosity. This improved toughness is expected to promote multi-hit capability.
关 键 词:Zirconia Toughened Alumina Toughening Mechanisms Fracture Toughness Ballistic Performance and Multi-Hit Capability
分 类 号:TG1[金属学及工艺—金属学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.189.11.42