Electrical Conductivity, Magnetoconductivity and Dielectric Behaviour of (Mg,Ni)-Ferrite below Room Temperature  

Electrical Conductivity, Magnetoconductivity and Dielectric Behaviour of (Mg,Ni)-Ferrite below Room Temperature

在线阅读下载全文

作  者:Somenath Ghatak Ajit Kumar Meikap Manika Sinha Swapan Kumar Pradhan 

机构地区:[1]Department of Physics, National Institute of Technology, Deemed University, Durgapur, India

出  处:《Materials Sciences and Applications》2010年第4期177-186,共10页材料科学与应用期刊(英文)

摘  要:We report a comprehensive study of electrical transport properties of stoichiometric (Mg,Ni)-ferrite in the temperature range 77 ≤ T ≤ 300K, applying magnetic field upto 1T in the frequency range 20 Hz-1 MHz. After ball milling of MgO, NiO and ?-Fe2O3 and annealing at 1473K, a (Mg,Ni)-ferrite phase is obtained. The temperature dependency of dc resistivity indicates the prevalence of a simple hopping type charge transport in all the investigated samples. The activation energy decreases by annealing the samples by 1473K. The dc magnetoresistivity of the samples is positive, which has been explained by using wave function shrinkage model. The frequency dependence of conductivity has been described by power law and the frequency exponent ‘s’ is found to be anomalous temperature dependent for ball milling and annealing samples. The real part of the dielectric permittivity at a fixed frequency was found to follow the power law ?/(f,T) ? Tn. The magnitude of the temperature exponent ‘n’ strongly depends on milling time and also on annealing temperature. The dielectric permittivity increases with milling and also with annealing. An analysis of the complex impedance by an ideal equivalent circuit indicates that the grain boundary contribution is dominating over the grain contribution in conduction process.We report a comprehensive study of electrical transport properties of stoichiometric (Mg,Ni)-ferrite in the temperature range 77 ≤ T ≤ 300K, applying magnetic field upto 1T in the frequency range 20 Hz-1 MHz. After ball milling of MgO, NiO and ?-Fe2O3 and annealing at 1473K, a (Mg,Ni)-ferrite phase is obtained. The temperature dependency of dc resistivity indicates the prevalence of a simple hopping type charge transport in all the investigated samples. The activation energy decreases by annealing the samples by 1473K. The dc magnetoresistivity of the samples is positive, which has been explained by using wave function shrinkage model. The frequency dependence of conductivity has been described by power law and the frequency exponent ‘s’ is found to be anomalous temperature dependent for ball milling and annealing samples. The real part of the dielectric permittivity at a fixed frequency was found to follow the power law ?/(f,T) ? Tn. The magnitude of the temperature exponent ‘n’ strongly depends on milling time and also on annealing temperature. The dielectric permittivity increases with milling and also with annealing. An analysis of the complex impedance by an ideal equivalent circuit indicates that the grain boundary contribution is dominating over the grain contribution in conduction process.

关 键 词:Ferrites Chemical Synthesis X-RAY SCATTERING TRANSPORT Properties 

分 类 号:O6[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象