检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:S. Solay Anand B. Mohan T. R. Parthasarathy
机构地区:[1]不详
出 处:《Materials Sciences and Applications》2011年第7期870-877,共8页材料科学与应用期刊(英文)
摘 要:The usage of powder metallurgy aluminium compacts in lieu of ferrous components in automotives helps to lower vehicle weight. The major drawback in the commercially available press sintered aluminium alloy is porosity which is mainly dependent on the powder metallurgical process parameters such as compaction pressure, sintering temperature and cooling rate after sintering. In this paper the effect of particle size and furnace controlled cooling after sintering on porosity level and micro hardness of an elemental 6061 aluminium alloy has been investigated. Aluminium particle sizes of 20 μm and 150 μm were used. The elemental 6061 aluminium alloy powders are warm compacted at 175 MPa. After sintering for about one hour at 600°C, the aluminium compacts were furnace cooled at the rate of 1°C /min to different temperatures of 500°C, 400°C, 300°C and 200?C. When the cooling temperature after sintering inside the furnace is effected at various temperatures from 600°C to 200°C, for a precipitate hardened aluminium compacts with aluminium particle size of 20 μm, the porosity level reduced by 26% and that for aluminium particle size of 150μm, the porosity level reduced by 23%. Marked improvement in micro hardness value is also observed correspondingly.The usage of powder metallurgy aluminium compacts in lieu of ferrous components in automotives helps to lower vehicle weight. The major drawback in the commercially available press sintered aluminium alloy is porosity which is mainly dependent on the powder metallurgical process parameters such as compaction pressure, sintering temperature and cooling rate after sintering. In this paper the effect of particle size and furnace controlled cooling after sintering on porosity level and micro hardness of an elemental 6061 aluminium alloy has been investigated. Aluminium particle sizes of 20 μm and 150 μm were used. The elemental 6061 aluminium alloy powders are warm compacted at 175 MPa. After sintering for about one hour at 600°C, the aluminium compacts were furnace cooled at the rate of 1°C /min to different temperatures of 500°C, 400°C, 300°C and 200?C. When the cooling temperature after sintering inside the furnace is effected at various temperatures from 600°C to 200°C, for a precipitate hardened aluminium compacts with aluminium particle size of 20 μm, the porosity level reduced by 26% and that for aluminium particle size of 150μm, the porosity level reduced by 23%. Marked improvement in micro hardness value is also observed correspondingly.
关 键 词:POWDER METALLURGY Particle Size COOLING Rate PRECIPITATION HARDENING POROSITY
分 类 号:TG14[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117