Characterization and Lifetime Estimation of High Density Polyethylene Containing a Prodegradant Agent  

Characterization and Lifetime Estimation of High Density Polyethylene Containing a Prodegradant Agent

在线阅读下载全文

作  者:Cynthia D. C. Erbetta Raquel C. S. Azevedo Karen S. Andrade Maria Elisa S. R. e Silva Roberto F. S. Freitas Ricardo G. Sousa 

机构地区:[1]Polymer Science and Technology Laboratory, Chemical Engineering Department, Engineering School, Federal University of Minas Gerais, Belo Horizonte, Brazil

出  处:《Materials Sciences and Applications》2017年第13期979-991,共13页材料科学与应用期刊(英文)

摘  要:High density polyethylene (HDPE) samples, containing different concentrations of prodegradant additive d2w?, were prepared. The properties of the samples were evaluated through differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), rheometry, and scanning electron microscopy (SEM). The work contributes to decreasing the products made of non-biodegradable polymeric materials derived from fossil sources which are have become a problem due to their increasingly inappropriate disposal and long degradation time in the environment. The obtained results indicated that there was no degradation of the samples due to processing. No significant changes in melting temperature, crystallinity, viscoelastic behavior, molecular weight and chemical composition were observed. Images from SEM analysis showed particles on HDPE surface, attributed to prodegradant additive d2w?. Oxidation Onset Temperature (OOT) results showed that the additive d2w? accelerated the degradation of HDPE. The activation energy (Ea) was determined by Ozawa-Wall-Flynn method. The obtained values were used for lifetime estimation of the samples. At 25°C, HDPE with d2w? showed a lifetime 50% higher than that of HDPE without this additive. This fact is attributed to the presence of stabilizers in masterbatch d2w? and the absence of oxygen in thermogravimetric analysis.High density polyethylene (HDPE) samples, containing different concentrations of prodegradant additive d2w?, were prepared. The properties of the samples were evaluated through differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), rheometry, and scanning electron microscopy (SEM). The work contributes to decreasing the products made of non-biodegradable polymeric materials derived from fossil sources which are have become a problem due to their increasingly inappropriate disposal and long degradation time in the environment. The obtained results indicated that there was no degradation of the samples due to processing. No significant changes in melting temperature, crystallinity, viscoelastic behavior, molecular weight and chemical composition were observed. Images from SEM analysis showed particles on HDPE surface, attributed to prodegradant additive d2w?. Oxidation Onset Temperature (OOT) results showed that the additive d2w? accelerated the degradation of HDPE. The activation energy (Ea) was determined by Ozawa-Wall-Flynn method. The obtained values were used for lifetime estimation of the samples. At 25°C, HDPE with d2w? showed a lifetime 50% higher than that of HDPE without this additive. This fact is attributed to the presence of stabilizers in masterbatch d2w? and the absence of oxygen in thermogravimetric analysis.

关 键 词:LIFETIME High DENSITY POLYETHYLENE Prodegradant Agent THERMOGRAVIMETRIC Analysis ACTIVATION Energy 

分 类 号:O6[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象