检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Henry E. Cardenas Huayuan Zhong Henry E. Cardenas;Huayuan Zhong(College of Engineering and Science, Louisiana Tech University, Ruston, LA, USA)
机构地区:[1]College of Engineering and Science, Louisiana Tech University, Ruston, LA, USA
出 处:《Materials Sciences and Applications》2020年第11期767-786,共20页材料科学与应用期刊(英文)
摘 要:Electrokinetic pozzolanic nanoparticle treatments have been reported in the literature to achieve rapid porosity reductions and deeply penetrating strength enhancement of cement and concrete. The high electric fields required to achieve these results have tended to be accompanied by particle suspension instability. Coagulation is an instability that can limit the efficiency and effectiveness of a treatment by removing particles from suspension. The current study examines how electro-coagulation impacts electrokinetic treatment effectiveness. The nano-pozzolan suspension used in this study was Nalco 1056, alumina-coated silica (24-nm). A threshold electric field strength of 0.4 V/cm was identified for avoiding direct electro-coagulation. Treatments conducted at this threshold value exhibited a 50% strength increase. Treatments conducted above this threshold value exhibited significant particle electro-coagulation losses and strength increases of only 25%. This study found that electro-coagulation was influenced by the electric field strength, through a combination of particle crowding at pore entrances and pH shifts as driven by electrolysis.Electrokinetic pozzolanic nanoparticle treatments have been reported in the literature to achieve rapid porosity reductions and deeply penetrating strength enhancement of cement and concrete. The high electric fields required to achieve these results have tended to be accompanied by particle suspension instability. Coagulation is an instability that can limit the efficiency and effectiveness of a treatment by removing particles from suspension. The current study examines how electro-coagulation impacts electrokinetic treatment effectiveness. The nano-pozzolan suspension used in this study was Nalco 1056, alumina-coated silica (24-nm). A threshold electric field strength of 0.4 V/cm was identified for avoiding direct electro-coagulation. Treatments conducted at this threshold value exhibited a 50% strength increase. Treatments conducted above this threshold value exhibited significant particle electro-coagulation losses and strength increases of only 25%. This study found that electro-coagulation was influenced by the electric field strength, through a combination of particle crowding at pore entrances and pH shifts as driven by electrolysis.
关 键 词:Hardening Cement Electrokinetic Treatment NANOPARTICLE Stability SUSPENSION POROSITY Strength
分 类 号:TB3[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28