机构地区:[1]Department of Physiology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan [2]BANDO Dental Clinic, Ishikawa, Japan
出 处:《Materials Sciences and Applications》2022年第1期54-62,共9页材料科学与应用期刊(英文)
摘 要:The effectiveness and safety of the mouthguard are greatly affected by its thickness. The aim of this study was to investigate the effect of thermal shrinkage of the extruded sheet on the mouthguard thickness depending on the amount of undercut of the model. Mouthguard sheet was used a 4.0 mm thick ethylene-vinyl acetate resin manufactured by extrusion molding. The sheets were placed in the vacuum forming machine with the sheet extrusion direction either vertical (condition V) or parallel (condition P) to the model’s centerline. The working models were three hard plaster models trimmed so that the angles of the anterior teeth to the model base were 90?, 100?, and 110? (Models A, B, and C). The sheet was softened until it sagged 15 mm, and then suction was continued for 30 s. Measurement points of the mouthguard were the incisal portion (incisal edge and labial surface) and molar portion (cusp and buccal surface). The differences in the reduction rate of the thickness due to model form and extrusion direction were analyzed using two-way ANOVA and Bonferroni’s multiple comparison tests. Differences in thickness depending on the extrusion direction of the sheet were observed in Models B and C on the labial surface and in all models on the buccal surface, and the thicknesses obtained under condition P were significantly thinner than those obtained under condition V. The thicknesses of the incisal edge and the cusp were not affected by the extrusion direction. The result of this study was suggested that the labial and buccal thickness of the mouthguard was secured by placing the sheet in the extrusion direction vertical to the model’s centerline. Furthermore, it was clarified that the presence of the undercut of the model tends to increase the influence of the extrusion direction of the sheet on the thickness of the mouthguard.The effectiveness and safety of the mouthguard are greatly affected by its thickness. The aim of this study was to investigate the effect of thermal shrinkage of the extruded sheet on the mouthguard thickness depending on the amount of undercut of the model. Mouthguard sheet was used a 4.0 mm thick ethylene-vinyl acetate resin manufactured by extrusion molding. The sheets were placed in the vacuum forming machine with the sheet extrusion direction either vertical (condition V) or parallel (condition P) to the model’s centerline. The working models were three hard plaster models trimmed so that the angles of the anterior teeth to the model base were 90?, 100?, and 110? (Models A, B, and C). The sheet was softened until it sagged 15 mm, and then suction was continued for 30 s. Measurement points of the mouthguard were the incisal portion (incisal edge and labial surface) and molar portion (cusp and buccal surface). The differences in the reduction rate of the thickness due to model form and extrusion direction were analyzed using two-way ANOVA and Bonferroni’s multiple comparison tests. Differences in thickness depending on the extrusion direction of the sheet were observed in Models B and C on the labial surface and in all models on the buccal surface, and the thicknesses obtained under condition P were significantly thinner than those obtained under condition V. The thicknesses of the incisal edge and the cusp were not affected by the extrusion direction. The result of this study was suggested that the labial and buccal thickness of the mouthguard was secured by placing the sheet in the extrusion direction vertical to the model’s centerline. Furthermore, it was clarified that the presence of the undercut of the model tends to increase the influence of the extrusion direction of the sheet on the thickness of the mouthguard.
关 键 词:MOUTHGUARD Extrusion Molding Thickness Model Angle UNDERCUT
分 类 号:TG1[金属学及工艺—金属学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...