机构地区:[1]Technical Faculty in Bor,University of Belgrade,Bor,Serbia [2]Mining and Metallurgy Institute,Zeleni Bulevar,Bor,Serbia
出 处:《Open Journal of Metal》2012年第3期60-67,共8页金属学报(美国)
基 金:The authors gratefully acknowledge financial support from the Ministry of Education and Science,Government of the Republic of Serbia through the Project No.172 060:“New approach to designing materials for energy conversion and storage”.
摘 要:Electrochemical characteristics of covellite (CuS) are of importance from flotation and metallurgical point of view, as well as due to its potential application in solid state solar cells and in photocatalytic reactions. Also, the compound CuS appears as an intermediary product or a final product in electrochemical oxidation reactions of chalcocite (Cu2S) which exhibits supercapacitor characteristics. Natural copper mineral covellite has been investigated in inorganic sulfate acid electrolytes, as well as in strong alkaline electrolyte. Physical properties of covellite were characterized by X-ray diffraction (XRD) and the active surface was examined by optical and electron microscopy (EM) before and after oxidation in galvanostatic regime. Different electrochemical methods (galvanostatic, potentiostatic, cyclic voltammetry and electrochemical impedance spectroscopy - EIS) have been used. The capacitance of around 21 Fcm-2 (geometric area), serial resistance of about 90 Ωcm2 and leakage resistance of about 1200 Ωcm2 have been measured in 1 M H2SO4. The addition of cupric ions in sulfate electrolyte leads to the significant increasing of the capacitance, but having the increase of self-discharge as a negative side phenomenon. The capacitance of around 6.7 Fcm-2 (geometric area), serial resistance of about 80 Ωcm2 and leakage resistance of about 380 Ωcm2 have been measured in 6 M KOH.Electrochemical characteristics of covellite (CuS) are of importance from flotation and metallurgical point of view, as well as due to its potential application in solid state solar cells and in photocatalytic reactions. Also, the compound CuS appears as an intermediary product or a final product in electrochemical oxidation reactions of chalcocite (Cu2S) which exhibits supercapacitor characteristics. Natural copper mineral covellite has been investigated in inorganic sulfate acid electrolytes, as well as in strong alkaline electrolyte. Physical properties of covellite were characterized by X-ray diffraction (XRD) and the active surface was examined by optical and electron microscopy (EM) before and after oxidation in galvanostatic regime. Different electrochemical methods (galvanostatic, potentiostatic, cyclic voltammetry and electrochemical impedance spectroscopy - EIS) have been used. The capacitance of around 21 Fcm-2 (geometric area), serial resistance of about 90 Ωcm2 and leakage resistance of about 1200 Ωcm2 have been measured in 1 M H2SO4. The addition of cupric ions in sulfate electrolyte leads to the significant increasing of the capacitance, but having the increase of self-discharge as a negative side phenomenon. The capacitance of around 6.7 Fcm-2 (geometric area), serial resistance of about 80 Ωcm2 and leakage resistance of about 380 Ωcm2 have been measured in 6 M KOH.
关 键 词:COVELLITE CAPACITANCE Copper Sulfides Electrochemical Characterization Solar Cells
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...