机构地区:[1]Laboratoire des Sciences et Technologies de l’Environnement, UFR Environnement, Université Jean Lorougnon Guédé, Daloa, Cô te d’Ivoire [2]UFR des Sciences Biologiques, Université Péléforo Gon Coulibaly, Korhogo, Cô te d’Ivoire [3]Laboratoire de Constitution et de Réaction de la Matière, UFR SSMT, Université Félix Houphouë t-Boigny, Abidjan, Cô te d’Ivoire
出 处:《Open Journal of Physical Chemistry》2022年第4期47-70,共24页物理化学期刊(英文)
摘 要:Due to acidic solutions aggressiveness, corrosion inhibitors use is considered to be one the most practical methods to delay metals dissolution in the said solutions. In this study benzimidazolyl derivative namely 2-cyanochalcones 2-(5-nitro-1,3-dihydrobenzimidazol-2-ylidene)-3-oxo-3-(2-oxo-2H-chromen-3-yl) propanenitrile which was synthesized was then applied as a corrosion inhibitor for copper in 1 M HNO<sub>3</sub> solution. The inhibition action of this molecule was evaluated by gravimetric and density functional theory (DFT) methods. It was found experimentally that this compound has a better inhibition performance and its adsorption on copper surface follows Langmuir adsorption isotherm. This adsorption evolves with temperature and inhibitor concentration, it is endothermic and occurs spontaneously with an increase in disorder. Corrosion kinetic parameters analysis supported by Adejo-Ekwenchi model revealed the existence of both physisorption and chemisorption. DFT calculations related that compound adsorption on copper surface is due to its electron donating and accepting capacity. The reactive regions specifying the electrophilic and nucleophilic attack sites were analyzed using Fukui and dual descriptor functions. Experimental results obtained were compared with the theoretical findings.Due to acidic solutions aggressiveness, corrosion inhibitors use is considered to be one the most practical methods to delay metals dissolution in the said solutions. In this study benzimidazolyl derivative namely 2-cyanochalcones 2-(5-nitro-1,3-dihydrobenzimidazol-2-ylidene)-3-oxo-3-(2-oxo-2H-chromen-3-yl) propanenitrile which was synthesized was then applied as a corrosion inhibitor for copper in 1 M HNO<sub>3</sub> solution. The inhibition action of this molecule was evaluated by gravimetric and density functional theory (DFT) methods. It was found experimentally that this compound has a better inhibition performance and its adsorption on copper surface follows Langmuir adsorption isotherm. This adsorption evolves with temperature and inhibitor concentration, it is endothermic and occurs spontaneously with an increase in disorder. Corrosion kinetic parameters analysis supported by Adejo-Ekwenchi model revealed the existence of both physisorption and chemisorption. DFT calculations related that compound adsorption on copper surface is due to its electron donating and accepting capacity. The reactive regions specifying the electrophilic and nucleophilic attack sites were analyzed using Fukui and dual descriptor functions. Experimental results obtained were compared with the theoretical findings.
关 键 词:2-Cyanochalcones2-(5-Nitro-1 3-Dihydrobenzimidazol-2-Ylidene)-3-Oxo-3-(2-Oxo-2H-Chromen-3-Yl) Propanenitrile Copper HNO3 Solution Gravimetric Density Functional Theory
分 类 号:TG1[金属学及工艺—金属学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...