Surface Modification of Cellulose with Silanes for Adhesive Application: Review  

Surface Modification of Cellulose with Silanes for Adhesive Application: Review

在线阅读下载全文

作  者:Ravindra V. Gadhave Pritam V. Dhawale Chaitali S. Sorate Ravindra V. Gadhave;Pritam V. Dhawale;Chaitali S. Sorate(Department of Polymer and Surface Engineering, Institute of Chemical Technology, Mumbai, India;Department of Microbiology, Savitribai Phule Pune University, Pune, India)

机构地区:[1]Department of Polymer and Surface Engineering, Institute of Chemical Technology, Mumbai, India [2]Department of Microbiology, Savitribai Phule Pune University, Pune, India

出  处:《Open Journal of Polymer Chemistry》2021年第2期11-30,共20页高分子化学期刊(英文)

摘  要:There has been an increasing interest </span><span style="font-family:"">in </span><span style="font-family:"">research on using bio-renewable polymers as a replacement to traditional synthetic polymers based on petroleum resources for adhesive applications. Cellulose, which is the most abundant biopolymer finds application as a reinforcing agent in conventional adhesives. However, natural polymer cellulose suffers from a few drawbacks like poor water resistance, low mechanical strength, and compatibility within the hydrophobic matrix. For emerging as sustainable alternatives for synthetic polymers, cellulose and its derivatives must have comparable physical, chemical, thermal, and mechanical properties to those of synthetic polymers. To achieve this, cellulose has been chemically modified as it has free hydroxyl groups which act as a site for modification. Among various techniques used crosslinking and silane modification have shown better properties. Various silanes have been identified and used for modifying both micro-cellulose and nano-cellulose, by the formation of covalent bonds. Silanes have the ability to react with the low number of free hydroxyl groups present in the cellulose surfaces, therefore promotes surface modification. Hence referring to the increase in the research works related to the silane modification of cellulose and its applicability focusing on wood adhesives, the main aim of this review paper is to summarize various works relating to this field.There has been an increasing interest </span><span style="font-family:"">in </span><span style="font-family:"">research on using bio-renewable polymers as a replacement to traditional synthetic polymers based on petroleum resources for adhesive applications. Cellulose, which is the most abundant biopolymer finds application as a reinforcing agent in conventional adhesives. However, natural polymer cellulose suffers from a few drawbacks like poor water resistance, low mechanical strength, and compatibility within the hydrophobic matrix. For emerging as sustainable alternatives for synthetic polymers, cellulose and its derivatives must have comparable physical, chemical, thermal, and mechanical properties to those of synthetic polymers. To achieve this, cellulose has been chemically modified as it has free hydroxyl groups which act as a site for modification. Among various techniques used crosslinking and silane modification have shown better properties. Various silanes have been identified and used for modifying both micro-cellulose and nano-cellulose, by the formation of covalent bonds. Silanes have the ability to react with the low number of free hydroxyl groups present in the cellulose surfaces, therefore promotes surface modification. Hence referring to the increase in the research works related to the silane modification of cellulose and its applicability focusing on wood adhesives, the main aim of this review paper is to summarize various works relating to this field.

关 键 词:CELLULOSE BIOPOLYMER Silane Modification ADHESIVE Renewable Material 

分 类 号:O63[理学—高分子化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象