Impact of Ash-Fertilization and Soil Preparation on Soil Respiration and Vegetation Colonization on Cutaway Peatlands  

Impact of Ash-Fertilization and Soil Preparation on Soil Respiration and Vegetation Colonization on Cutaway Peatlands

在线阅读下载全文

作  者:Niko Silvan Jyrki Hytönen Niko Silvan;Jyrki Hytönen(Natural Resources Institute Finland, New Technologies Development, Parkano Unit, Parkano, Finland;Natural Resources Institute Finland, Natural Resources and Bioproduction, Kannus Unit, Kannus, Finland)

机构地区:[1]Natural Resources Institute Finland, New Technologies Development, Parkano Unit, Parkano, Finland [2]Natural Resources Institute Finland, Natural Resources and Bioproduction, Kannus Unit, Kannus, Finland

出  处:《American Journal of Climate Change》2016年第2期178-192,共15页美国气候变化期刊(英文)

摘  要:As a result of several decades of peat extraction, the area of cutaway peatlands in Finland totals ca. 50,000 ha. Furthermore, some 2000 - 3000 ha of peatlands are abandoned annually from active peat extraction. Forestry is considered to be their main after-use option. However, since cutaway peat is generally rich in nitrogen, but poor in phosphorus and potassium, soil amelioration measures are needed for successful vegetation and afforestation. Soil preparations bringing mineral soil into peat surface or recycling of ash containing P and K are alternative ways for soil amelioration. We studied the initial effects of soil preparation and ash fertilization on soil CO<sub>2</sub>-effluxes and colonisation of cutaway peat by vegetation. Oppositely to the previous studies, this study shows that carbon released from the residual peat may be so high that the ash-fertilized cutaway peatlands still act as sources of carbon even after afforestation. However, even though the CO<sub>2</sub>-effluxes following ash fertilization or soil preparation may occasionally exceed the carbon sequestration into growing tree stands, afforestation mostly compensates the CO<sub>2</sub>-effluxes if also we take into consideration the below-ground biomass. In conclusion, our study shows that although ash fertilization enhances the CO<sub>2</sub>-effluxes into the atmosphere, it has beneficial effects on the environment by enabling rapid colonisation of vegetation on these sites which would remain vegetationless for decades without soil amelioration.As a result of several decades of peat extraction, the area of cutaway peatlands in Finland totals ca. 50,000 ha. Furthermore, some 2000 - 3000 ha of peatlands are abandoned annually from active peat extraction. Forestry is considered to be their main after-use option. However, since cutaway peat is generally rich in nitrogen, but poor in phosphorus and potassium, soil amelioration measures are needed for successful vegetation and afforestation. Soil preparations bringing mineral soil into peat surface or recycling of ash containing P and K are alternative ways for soil amelioration. We studied the initial effects of soil preparation and ash fertilization on soil CO<sub>2</sub>-effluxes and colonisation of cutaway peat by vegetation. Oppositely to the previous studies, this study shows that carbon released from the residual peat may be so high that the ash-fertilized cutaway peatlands still act as sources of carbon even after afforestation. However, even though the CO<sub>2</sub>-effluxes following ash fertilization or soil preparation may occasionally exceed the carbon sequestration into growing tree stands, afforestation mostly compensates the CO<sub>2</sub>-effluxes if also we take into consideration the below-ground biomass. In conclusion, our study shows that although ash fertilization enhances the CO<sub>2</sub>-effluxes into the atmosphere, it has beneficial effects on the environment by enabling rapid colonisation of vegetation on these sites which would remain vegetationless for decades without soil amelioration.

关 键 词:Soil Amelioration CO2-Efflux Ground Vegetation Cutaway Peatlands 

分 类 号:S15[农业科学—土壤学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象