The Growth Factors Involved in Microalgae Cultivation for Biofuel Production: A Review  被引量:2

The Growth Factors Involved in Microalgae Cultivation for Biofuel Production: A Review

在线阅读下载全文

作  者:Kamrul Hasan Chowdury Nurun Nahar Ujjwal Kumar Deb Kamrul Hasan Chowdury;Nurun Nahar;Ujjwal Kumar Deb(Department of Mathematics, Chittagong University of Engineering & Technology, Chittagong, Bangladesh)

机构地区:[1]Department of Mathematics, Chittagong University of Engineering & Technology, Chittagong, Bangladesh

出  处:《Computational Water, Energy, and Environmental Engineering》2020年第4期185-215,共31页水能与环境工程(英文)

摘  要:The growing demand for energy and the negative environmental impacts of fossil fuel use are triggering global searches for a renewable and eco-friendly alternative biofuel. Microalgae are considered as one of the most promising feedstocks for biofuel production, due to many advantages including cultivation </span><span><span style="font-family:Verdana;">in non-arable land and being able to grow in wastewater or seawater. That is why;microalgae-based biofuels are regarded as one of the best candidates to replace fossil fuels. There are two main types of microalgae cultivation systems: Open Raceway Ponds and Closed </span><span style="font-family:Verdana;">Photobioreactos</span><span style="font-family:Verdana;"> (PBRs). Due to some limitations in Open Raceways, PBRs have become the most favorable choice for biofuel producers, ev</span></span><span style="font-family:Verdana;">en though it is costly. To make the process viable, the growth of microalgae for biofuel production should be </span><span style="font-family:Verdana;">cost</span></span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">effective</span><span style="font-family:""><span style="font-family:Verdana;">. One way to achieve this goal is to optimize the environmental factors that influence their growth during the cultivation stage to increase the accumulation of bio-compounds of fuel. Algal growth relies mostly on nutrients, CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> concentration, pH and salinity, light intensity and quality, temperature </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> finally mixing, which directly affects all other factors. Thus, before designing PBR, a thorough study </span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> these growth parameters is needed. In the present </span><span style="font-family:Verdana;">study</span></span><span style="font-family:Verdana;">,</span><spaThe growing demand for energy and the negative environmental impacts of fossil fuel use are triggering global searches for a renewable and eco-friendly alternative biofuel. Microalgae are considered as one of the most promising feedstocks for biofuel production, due to many advantages including cultivation </span><span><span style="font-family:Verdana;">in non-arable land and being able to grow in wastewater or seawater. That is why;microalgae-based biofuels are regarded as one of the best candidates to replace fossil fuels. There are two main types of microalgae cultivation systems: Open Raceway Ponds and Closed </span><span style="font-family:Verdana;">Photobioreactos</span><span style="font-family:Verdana;"> (PBRs). Due to some limitations in Open Raceways, PBRs have become the most favorable choice for biofuel producers, ev</span></span><span style="font-family:Verdana;">en though it is costly. To make the process viable, the growth of microalgae for biofuel production should be </span><span style="font-family:Verdana;">cost</span></span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">effective</span><span style="font-family:""><span style="font-family:Verdana;">. One way to achieve this goal is to optimize the environmental factors that influence their growth during the cultivation stage to increase the accumulation of bio-compounds of fuel. Algal growth relies mostly on nutrients, CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> concentration, pH and salinity, light intensity and quality, temperature </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> finally mixing, which directly affects all other factors. Thus, before designing PBR, a thorough study </span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> these growth parameters is needed. In the present </span><span style="font-family:Verdana;">study</span></span><span style="font-family:Verdana;">,</span><spa

关 键 词:MICROALGAE BIOFUEL PHOTOBIOREACTOR CULTIVATION Growth Factors 

分 类 号:F42[经济管理—产业经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象