Irrigation Demand VS Supply-Remote Sensing and GIS Approach  

Irrigation Demand VS Supply-Remote Sensing and GIS Approach

在线阅读下载全文

作  者:Ch. Ramesh Naidu M. V. S. S. Giridhar Ch. Ramesh Naidu;M. V. S. S. Giridhar(GVP College of Engineering (Autonomous), Visakhapatnam, India;Jawaharlal Nehru Technological University, Hyderabad, India)

机构地区:[1]GVP College of Engineering (Autonomous), Visakhapatnam, India [2]Jawaharlal Nehru Technological University, Hyderabad, India

出  处:《Journal of Geoscience and Environment Protection》2016年第1期43-49,共7页地球科学和环境保护期刊(英文)

摘  要:To determine the irrigation requirements of rice crop on different soils, an integrated approach is used using Remote Sensing and GIS techniques. Depending on the type of soil, climate and the crop acreage, the water requirement for paddy fields is derived. This study is focused on estimating the water demand for rice crop in Rabi season. Crop evapo-transpiration and soil percolation losses account more in rice fields especially in hot climate like Rabi season. In addition to evapo-transpiration and percolation losses, the conveyance losses are also accountable in the case of unlined canals. Satellite data is used to estimate the rice and fallow lands. In conjunction to satellite interpreted data, climate and soil data are also integrated in GIS platform. CROPWAT model is used to determine the crop evapo-transpiration (ET<sub>c</sub>). There are 11 Water User’s Associations (WUA) in the command area and under which 13 canal blocks are delineated. These blocks are again delineated in to 212 sub blocks. This study indicates that there exists a 5% to 20% of water deficiency in some WUAs and also water surplus in some WUAs varying from 15% to 40%.To determine the irrigation requirements of rice crop on different soils, an integrated approach is used using Remote Sensing and GIS techniques. Depending on the type of soil, climate and the crop acreage, the water requirement for paddy fields is derived. This study is focused on estimating the water demand for rice crop in Rabi season. Crop evapo-transpiration and soil percolation losses account more in rice fields especially in hot climate like Rabi season. In addition to evapo-transpiration and percolation losses, the conveyance losses are also accountable in the case of unlined canals. Satellite data is used to estimate the rice and fallow lands. In conjunction to satellite interpreted data, climate and soil data are also integrated in GIS platform. CROPWAT model is used to determine the crop evapo-transpiration (ET<sub>c</sub>). There are 11 Water User’s Associations (WUA) in the command area and under which 13 canal blocks are delineated. These blocks are again delineated in to 212 sub blocks. This study indicates that there exists a 5% to 20% of water deficiency in some WUAs and also water surplus in some WUAs varying from 15% to 40%.

关 键 词:GIS Water Users Association EVAPO-TRANSPIRATION Remote Sensing IRRIGATION 

分 类 号:S51[农业科学—作物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象