Micro Hydro Potential Modelling: Integrating GIS into Energy Alternatives for Climate Change Mitigation  

Micro Hydro Potential Modelling: Integrating GIS into Energy Alternatives for Climate Change Mitigation

在线阅读下载全文

作  者:Gerald C. K. Chelelgo David N. Siriba Elijah K. Biamah Gerald C. K. Chelelgo;David N. Siriba;Elijah K. Biamah(Department of Environmental and Biosystems Engineering, University of Nairobi, Nairobi, Kenya;Department of Geospatial and Space Technology, University of Nairobi, Nairobi, Kenya)

机构地区:[1]Department of Environmental and Biosystems Engineering, University of Nairobi, Nairobi, Kenya [2]Department of Geospatial and Space Technology, University of Nairobi, Nairobi, Kenya

出  处:《Journal of Geoscience and Environment Protection》2016年第8期47-59,共13页地球科学和环境保护期刊(英文)

摘  要:This research focused on integrating GIS into energy alternatives for climate change mitigation by creating a GIS-based hydrologic model that can be used to identify sites that have significant potential for micro hydropower development within the River Perkerra catchment area. Hydropower is a clean and renewable energy source that remains largely untapped in the country and its development can be used to mitigate anthropogenic climate change by reducing reliance on fossil or biomass derived fuels. This research established the extent of this resource and whether the available sites with significant micro hydropower potential within the study area were amply copious to warrant further development. Currently, such identification is done physically using means that are menial, costly and significantly time consuming. A 90-metre resolution Digital Terrain Model (DTM) data obtained from the Shuttle Radar Topography Mission and various GIS tools were used to create a hydrologic framework which was used to identify potential sites along River Perkerra that suited any desired head requirement for the purposes of locating micro hydropower plants. The derived model demonstrated that it was possible to identify sites at discrete geographic locations along any stream drainage network using GIS. In addition, the model also provides a decision support system that integrates a powerful graphical user interface, spatial database management system and a generalized river basin network flow model for the purposes of exploiting and developing micro hydropower. With sufficient data on catchment discharge and use of higher resolution DTM, the model can be further enhanced to accurately obtain the total microhydro potential of River Perkerra by aggregating the respective potentials of every steam segment.This research focused on integrating GIS into energy alternatives for climate change mitigation by creating a GIS-based hydrologic model that can be used to identify sites that have significant potential for micro hydropower development within the River Perkerra catchment area. Hydropower is a clean and renewable energy source that remains largely untapped in the country and its development can be used to mitigate anthropogenic climate change by reducing reliance on fossil or biomass derived fuels. This research established the extent of this resource and whether the available sites with significant micro hydropower potential within the study area were amply copious to warrant further development. Currently, such identification is done physically using means that are menial, costly and significantly time consuming. A 90-metre resolution Digital Terrain Model (DTM) data obtained from the Shuttle Radar Topography Mission and various GIS tools were used to create a hydrologic framework which was used to identify potential sites along River Perkerra that suited any desired head requirement for the purposes of locating micro hydropower plants. The derived model demonstrated that it was possible to identify sites at discrete geographic locations along any stream drainage network using GIS. In addition, the model also provides a decision support system that integrates a powerful graphical user interface, spatial database management system and a generalized river basin network flow model for the purposes of exploiting and developing micro hydropower. With sufficient data on catchment discharge and use of higher resolution DTM, the model can be further enhanced to accurately obtain the total microhydro potential of River Perkerra by aggregating the respective potentials of every steam segment.

关 键 词:Component Formatting Style STYLING GIS Micro Hydropower Modelling DTM Catchment Delineation River Perkerra 

分 类 号:TV1[水利工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象