机构地区:[1]Department of environmental Earth Sciences, University of Eldoret, Uasin Gishu, Kenya
出 处:《Journal of Geoscience and Environment Protection》2022年第11期204-224,共21页地球科学和环境保护期刊(英文)
摘 要:Development of groundwater needs the capabilities to distinguish the different aquifer layers found in a region, and thereafter the parameters which can be used expressly to define the aquifer type. The past studies in the Olbanita sub-basin have accorded the area as having one aquifer, which has resulted into generalization of the aquifer parameters. The objective in this study is to map the main aquifer layer and determine its parameters. The use of modeled geoelectric layers from Vertical Electrical Sounding (VES) data has been used in the study area to distinguish the major aquifer from the minor ones. There is noted an excellent correlation between the geoelectric layers and the lithologies as outlined by the driller’s log clearly delineating four aquifer stratums. The main aquifer is identified to be geoelectric layer 11 and 12, defined by a thickness of 30.18 m mainly of tuffs, and 17.39 m mainly of weathered phonolites. Hydraulic conductivity of the main aquifer averages value of 17.16389314 m/day, in consideration of the ranges 0.248690465 m/day to 74.62681942 m/day for the 31 VES points. For the aquifer breadth of 30.18 m, the Transmissivity values vary from a minimum of 57.32119 Ωm<sup>2</sup> to 53365.49 Ωm<sup>2</sup> and for 47.57 m breadth, the range is between 11.83021 Ωm<sup>2</sup> and 1390.921 Ωm<sup>2</sup>. The variance of longitudinal unit conductance shows that 63.15 percent of the aquifer represented by one lithology is having lowest values of S (<sup>-1</sup>), an indication that the resistivity values of these points are relatively high when compared to their corresponding breadths. Notably, where the geoelectric layer is represented by more than one lithologic layer, the longitudinal unit conductance has high values of S (~1.1 - 5.3 Ω<sup>-1</sup>) at about 83.33 percent of the aquifer, thus giving a manifestation that a change in lithology has an implication in the aquifer characteristics. The transverse resistance values have a direct proportionality to both the aquifer layer tDevelopment of groundwater needs the capabilities to distinguish the different aquifer layers found in a region, and thereafter the parameters which can be used expressly to define the aquifer type. The past studies in the Olbanita sub-basin have accorded the area as having one aquifer, which has resulted into generalization of the aquifer parameters. The objective in this study is to map the main aquifer layer and determine its parameters. The use of modeled geoelectric layers from Vertical Electrical Sounding (VES) data has been used in the study area to distinguish the major aquifer from the minor ones. There is noted an excellent correlation between the geoelectric layers and the lithologies as outlined by the driller’s log clearly delineating four aquifer stratums. The main aquifer is identified to be geoelectric layer 11 and 12, defined by a thickness of 30.18 m mainly of tuffs, and 17.39 m mainly of weathered phonolites. Hydraulic conductivity of the main aquifer averages value of 17.16389314 m/day, in consideration of the ranges 0.248690465 m/day to 74.62681942 m/day for the 31 VES points. For the aquifer breadth of 30.18 m, the Transmissivity values vary from a minimum of 57.32119 Ωm<sup>2</sup> to 53365.49 Ωm<sup>2</sup> and for 47.57 m breadth, the range is between 11.83021 Ωm<sup>2</sup> and 1390.921 Ωm<sup>2</sup>. The variance of longitudinal unit conductance shows that 63.15 percent of the aquifer represented by one lithology is having lowest values of S (<sup>-1</sup>), an indication that the resistivity values of these points are relatively high when compared to their corresponding breadths. Notably, where the geoelectric layer is represented by more than one lithologic layer, the longitudinal unit conductance has high values of S (~1.1 - 5.3 Ω<sup>-1</sup>) at about 83.33 percent of the aquifer, thus giving a manifestation that a change in lithology has an implication in the aquifer characteristics. The transverse resistance values have a direct proportionality to both the aquifer layer t
关 键 词:AQUIFER Hydraulic Conductivity TRANSMISSIVITY Longitudinal Unit Conductance Transverse Resistance
分 类 号:P64[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...