Hurricane Camille 1969 and Storm-Triggered Landslides in the Appalachians and a Perspective in a Warmer Climate  

Hurricane Camille 1969 and Storm-Triggered Landslides in the Appalachians and a Perspective in a Warmer Climate

在线阅读下载全文

作  者:Diandong Ren Diandong Ren(Department of Imaging and Applied Physics, Curtin University of Technology, Perth, Australia)

机构地区:[1]Department of Imaging and Applied Physics, Curtin University of Technology, Perth, Australia

出  处:《International Journal of Geosciences》2016年第1期53-77,共25页地球科学国际期刊(英文)

摘  要:This study analyzes storm-triggered landslides in the US Appalachians, in the current geological setting. Concave valleys that favor the convergence of surface runoff are the primary locales for landslides. If the slopes are weathered to the same degree and have the same vegetation coverage, slope orientation (azimuthal) is not critical for slope stability. However, it is found that for the region south of the Black Mountains (North Carolina), north-facing slopes are more prone to slide, because, for the regions not limited by water availability (annual precipitation), the northern slopes usually are grass slopes. For the slopes of the Blue Ridge Mountains, south facing slopes are more prone to slide. Gravity measurements over the past decade reveal that geological conditions, the chute system and underground cracks over the region are stable. Future changes in storm-triggered landslide frequency are primarily controlled by changes in extreme precipitation. Thus, a series of ensemble climate model experiments is carried out to investigate possible changes in future extreme precipitation events, using a weather model forced by atmospheric perturbations from ensemble climate models. Over 50 locations are identified as prone to future landslides. Many of these locales are natural habitats to the Appalachian salamanders. In a future warmer climate, more severe extreme precipitation events are projected because of increased atmospheric water vapor and more frequent passages of tropical cyclone remnants. There is also a likely shift of tropical cyclone tracks and associated extreme precipitations, and the cluster center of Appalachians’s scarps is expected to move westward, with ecological consequences for the endemic salamanders.This study analyzes storm-triggered landslides in the US Appalachians, in the current geological setting. Concave valleys that favor the convergence of surface runoff are the primary locales for landslides. If the slopes are weathered to the same degree and have the same vegetation coverage, slope orientation (azimuthal) is not critical for slope stability. However, it is found that for the region south of the Black Mountains (North Carolina), north-facing slopes are more prone to slide, because, for the regions not limited by water availability (annual precipitation), the northern slopes usually are grass slopes. For the slopes of the Blue Ridge Mountains, south facing slopes are more prone to slide. Gravity measurements over the past decade reveal that geological conditions, the chute system and underground cracks over the region are stable. Future changes in storm-triggered landslide frequency are primarily controlled by changes in extreme precipitation. Thus, a series of ensemble climate model experiments is carried out to investigate possible changes in future extreme precipitation events, using a weather model forced by atmospheric perturbations from ensemble climate models. Over 50 locations are identified as prone to future landslides. Many of these locales are natural habitats to the Appalachian salamanders. In a future warmer climate, more severe extreme precipitation events are projected because of increased atmospheric water vapor and more frequent passages of tropical cyclone remnants. There is also a likely shift of tropical cyclone tracks and associated extreme precipitations, and the cluster center of Appalachians’s scarps is expected to move westward, with ecological consequences for the endemic salamanders.

关 键 词:Extreme Precipitation Climate Change Landslides Flash Floods Endemic Salamanders to Appalachians Ecosystem in Mountains Tropical Cyclone Remnants and Extra-Tropical Transition SEGMENT-Landslide Blue Mountain Ecosystem 

分 类 号:P64[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象