Semi-Automatic Fracture Mapping Using Cellular Neural Networks Applied to ALOS PALSAR 2 Images of the Western Highlands of Cameroon  

Semi-Automatic Fracture Mapping Using Cellular Neural Networks Applied to ALOS PALSAR 2 Images of the Western Highlands of Cameroon

在线阅读下载全文

作  者:Valère-Carin Jofack Sokeng Benjamin N’gounou Ngatcha Fernand Koffi Kouame Jean Homian Danumah Lucette Akpa You Valère-Carin Jofack Sokeng;Benjamin N’gounou Ngatcha;Fernand Koffi Kouame;Jean Homian Danumah;Lucette Akpa You(Unité de Recherche et d’Expertise Numérique, Université Virtuelle de Côte d’Ivoire, Abidjan, Côte d’Ivoire;Centre Universitaire de Recherche et d’Application en Télédétection, Abidjan, Côte d’Ivoire;Laboratoire Mixte International en Sciences de l’Eau (LAMISE), Université de Ngaoundéré, Ngaoundéré, Cameroun)

机构地区:[1]Unité de Recherche et d’Expertise Numérique, Université Virtuelle de Cô te d’Ivoire, Abidjan, Cô te d’Ivoire [2]Centre Universitaire de Recherche et d’Application en Télédétection, Abidjan, Cô te d’Ivoire [3]Laboratoire Mixte International en Sciences de l’Eau (LAMISE), Université de Ngaoundéré, Ngaoundéré, Cameroun

出  处:《International Journal of Geosciences》2021年第11期1055-1069,共15页地球科学国际期刊(英文)

摘  要:In Cameroon in general and in the Highlands of Cameroon in particular, there is no fracture map since its realization is not easy. The region’s harsh accessibility and climatic conditions make it difficult to carry out geological prospecting field missions that require large investments. This study proposes a semi-automatic lineament mapping approach to facilitate the elaboration of the fracture map in the West Cameroon Highlands. It uses neural networks in tandem with PCI Geomatica’s LINE algorithm to extract lineaments semi-automatically from an ALOS PALSAR 2 radar image. The cellular neural network algorithm of Lepage et al (2000) is implemented to enhance the pre-processed radar image. Then, the LINE module of Geomatica is applied </span><span style="font-family:Verdana;">to</span><span style="font-family:Verdana;"> the enhanced image for the automatic extraction of lineaments. Finally, a control and a validation of the expert by spatial analysis allows elaborat</span><span style="font-family:Verdana;">ing</span><span style="font-family:Verdana;"> the fracture map. The results obtained show that neural networks enhance and facilitate the identification of lineaments on the image. The resulting map contains more than 1800 fractures with major directions N20<span style="white-space:nowrap;">&#176;</span> - 30<span style="white-space:nowrap;">&#176;</span>, NS, N10<span style="white-space:nowrap;">&#176;</span> - 20<span style="white-space:nowrap;">&#176;</span>, N50<span style="white-space:nowrap;">&#176;</span> - 60<span style="white-space:nowrap;">&#176;</span>, N70<span style="white-space:nowrap;">&#176;</span> - 80<span style="white-space:nowrap;">&#176;</span>, N80<span style="white-space:nowrap;">&#176;</span> - 90<span style="white-space:nowrap;">&#176;</span>, N100<span style="white-space:nowrap;">&#176;</span> - 110<span style="white-space:nowrap;">&#176;</span>, N110<span style="white-space:nowrap;">&#176;</span> - 120<span style="white-space:nowrap;">&#176;</span> and N130<span style="white-spaceIn Cameroon in general and in the Highlands of Cameroon in particular, there is no fracture map since its realization is not easy. The region’s harsh accessibility and climatic conditions make it difficult to carry out geological prospecting field missions that require large investments. This study proposes a semi-automatic lineament mapping approach to facilitate the elaboration of the fracture map in the West Cameroon Highlands. It uses neural networks in tandem with PCI Geomatica’s LINE algorithm to extract lineaments semi-automatically from an ALOS PALSAR 2 radar image. The cellular neural network algorithm of Lepage et al (2000) is implemented to enhance the pre-processed radar image. Then, the LINE module of Geomatica is applied </span><span style="font-family:Verdana;">to</span><span style="font-family:Verdana;"> the enhanced image for the automatic extraction of lineaments. Finally, a control and a validation of the expert by spatial analysis allows elaborat</span><span style="font-family:Verdana;">ing</span><span style="font-family:Verdana;"> the fracture map. The results obtained show that neural networks enhance and facilitate the identification of lineaments on the image. The resulting map contains more than 1800 fractures with major directions N20<span style="white-space:nowrap;">&#176;</span> - 30<span style="white-space:nowrap;">&#176;</span>, NS, N10<span style="white-space:nowrap;">&#176;</span> - 20<span style="white-space:nowrap;">&#176;</span>, N50<span style="white-space:nowrap;">&#176;</span> - 60<span style="white-space:nowrap;">&#176;</span>, N70<span style="white-space:nowrap;">&#176;</span> - 80<span style="white-space:nowrap;">&#176;</span>, N80<span style="white-space:nowrap;">&#176;</span> - 90<span style="white-space:nowrap;">&#176;</span>, N100<span style="white-space:nowrap;">&#176;</span> - 110<span style="white-space:nowrap;">&#176;</span>, N110<span style="white-space:nowrap;">&#176;</span> - 120<span style="white-space:nowrap;">&#176;</span> and N130<span style="white-space

关 键 词:Fracture Map Lineament Mapping Cellular Neural Networks Highlands of Cameroon ALOS PALSAR Image 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象