机构地区:[1]Department of Chemistry, Joseph Sarwuan Tarka University, Makurdi, Nigeria
出 处:《Journal of Environmental Protection》2023年第10期841-858,共18页环境保护(英文)
摘 要:Two non-destructive analytical techniques (gamma spectrometer and X-ray diffractometer) were employed in the analysis of bauxite and rutile ore and their vicinity soil and control sourced within the Kanam and Wase mineral exploration sites. The activity concentrations of natural radionuclides <sup>238</sup>U, <sup>232</sup>Th, and <sup>40</sup>K in the soil samples received from bauxite and rutile mineral mining vicinities revealed high concentrations of <sup>238</sup>U, <sup>232</sup>Th, and <sup>40</sup>K compared to the control soil samples sourced 500 m away from the mineral exploration vicinities. Radiological detriments RLI, AUI, Hin and Hex unveiled values exceeding the radiation standard concentration (>1) for soil. X-ray diffraction characterization of bauxite ore revealed the interlocking minerals of Bauxite (18)%, Albite (11)%, Garnet (15)%, Illite (6)% and Muscovite (43)% in various proportions obtained within the 2θ range (9.18 to 64.4) and a peak value (intensity, cps) of 3400. Pure bauxite percentage in the ore meets metallurgical grade (15 - 25)%. X-ray diffraction of rutile ore revealed the minerals of rutile (40)%, quartz (21.4)%, ilmenite (27)% and garnet (11.8)% found within the 2θ range (27.5 to 35.6) and a peak value intensity of 31.1 - 100.0 cps also meeting the metallurgical grade of 15% - 25%. The major environmental concern associated with the mineral-sands industry is the radiation hazards, pollution of ground-water sources from heavy metals, mineral transport with heavy equipment’s, dredging operations in fragile coastal area and clearing of vegetation.Two non-destructive analytical techniques (gamma spectrometer and X-ray diffractometer) were employed in the analysis of bauxite and rutile ore and their vicinity soil and control sourced within the Kanam and Wase mineral exploration sites. The activity concentrations of natural radionuclides <sup>238</sup>U, <sup>232</sup>Th, and <sup>40</sup>K in the soil samples received from bauxite and rutile mineral mining vicinities revealed high concentrations of <sup>238</sup>U, <sup>232</sup>Th, and <sup>40</sup>K compared to the control soil samples sourced 500 m away from the mineral exploration vicinities. Radiological detriments RLI, AUI, Hin and Hex unveiled values exceeding the radiation standard concentration (>1) for soil. X-ray diffraction characterization of bauxite ore revealed the interlocking minerals of Bauxite (18)%, Albite (11)%, Garnet (15)%, Illite (6)% and Muscovite (43)% in various proportions obtained within the 2θ range (9.18 to 64.4) and a peak value (intensity, cps) of 3400. Pure bauxite percentage in the ore meets metallurgical grade (15 - 25)%. X-ray diffraction of rutile ore revealed the minerals of rutile (40)%, quartz (21.4)%, ilmenite (27)% and garnet (11.8)% found within the 2θ range (27.5 to 35.6) and a peak value intensity of 31.1 - 100.0 cps also meeting the metallurgical grade of 15% - 25%. The major environmental concern associated with the mineral-sands industry is the radiation hazards, pollution of ground-water sources from heavy metals, mineral transport with heavy equipment’s, dredging operations in fragile coastal area and clearing of vegetation.
关 键 词:RADIOLOGY MINERALOGY Mining Bauxite and Rutile Ores Environmental Contamination Radiological detriments X-Ray Diffractometer Gamma Spectrometer Control Soil
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...