A Bi-Objective Green Vehicle Routing Problem: A New Hybrid Optimization Algorithm Applied to a Newspaper Distribution  

A Bi-Objective Green Vehicle Routing Problem: A New Hybrid Optimization Algorithm Applied to a Newspaper Distribution

在线阅读下载全文

作  者:Júlio César Ferreira Maria Teresinha Arns Steiner Júlio César Ferreira;Maria Teresinha Arns Steiner(UniCuritiba, Curitiba, Paraná, Brazil;Graduate Program in Industrial Engineeringand Systems (PPGEPS), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil)

机构地区:[1]UniCuritiba, Curitiba, Paraná, Brazil [2]Graduate Program in Industrial Engineeringand Systems (PPGEPS), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil

出  处:《Journal of Geographic Information System》2021年第4期410-433,共24页地理信息系统(英文)

摘  要:The purpose of this work is to present a methodology to provide a solution to a Bi-objective Green Vehicle Routing Problem (BGVRP). The methodology, illustrated using a case study (newspaper distribution problem) and literature Instances, was divided into three stages: Stage 1, data treatment;Stage 2, “metaheuristic approaches” (hybrid or non-hybrid), used comparatively, more specifically: NSGA-II (Non-dominated Sorting Genetic Algorithm II), MOPSO (Multi-Objective Particle Swarm Optimization), which were compared with the new approaches proposed by the authors, CWNSGA-II (Clarke and Wright’s Savings with the Non-dominated Sorting Genetic Algorithm II) and CWTSNSGA-II (Clarke and Wright’s Savings, Tabu Search and Non-dominated Sorting Genetic Algorithm II);Stage 3, analysis of the results, with a comparison of the algorithms. An optimization of 19.9% was achieved for Objective Function 1 (OF<sub>1</sub>;minimization of CO<sub>2</sub> emissions) and consequently the same percentage for the minimization of total distance, and 87.5% for Objective Function 2 (OF<sub>2</sub>;minimization of the difference in demand). Metaheuristic approaches hybrid achieved superior results for case study and instances. In this way, the procedure presented here can bring benefits to society as it considers environmental issues and also balancing work between the routes, ensuring savings and satisfaction for the users.The purpose of this work is to present a methodology to provide a solution to a Bi-objective Green Vehicle Routing Problem (BGVRP). The methodology, illustrated using a case study (newspaper distribution problem) and literature Instances, was divided into three stages: Stage 1, data treatment;Stage 2, “metaheuristic approaches” (hybrid or non-hybrid), used comparatively, more specifically: NSGA-II (Non-dominated Sorting Genetic Algorithm II), MOPSO (Multi-Objective Particle Swarm Optimization), which were compared with the new approaches proposed by the authors, CWNSGA-II (Clarke and Wright’s Savings with the Non-dominated Sorting Genetic Algorithm II) and CWTSNSGA-II (Clarke and Wright’s Savings, Tabu Search and Non-dominated Sorting Genetic Algorithm II);Stage 3, analysis of the results, with a comparison of the algorithms. An optimization of 19.9% was achieved for Objective Function 1 (OF<sub>1</sub>;minimization of CO<sub>2</sub> emissions) and consequently the same percentage for the minimization of total distance, and 87.5% for Objective Function 2 (OF<sub>2</sub>;minimization of the difference in demand). Metaheuristic approaches hybrid achieved superior results for case study and instances. In this way, the procedure presented here can bring benefits to society as it considers environmental issues and also balancing work between the routes, ensuring savings and satisfaction for the users.

关 键 词:Bi-Objective Green Vehicle Routing Problem Green Logistics Meta-Heuristic Procedures Case Study Literature Instances 

分 类 号:TN9[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象