检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jianjian Shen
机构地区:[1]Institute of Hydropower and Hydroinformatics, Dalian University of Technology, Dalian, China
出 处:《Journal of Water Resource and Protection》2014年第16期1553-1560,共8页水资源与保护(英文)
摘 要:The paper presents a two-stage approach to cope with the long-term optimal operation of cascaded hydropower systems. This approach combines progressive optimality algorithm (POA) with quadratic programming (QP) to improve the optimization results. POA is used at the first stage to generate a local optimal result, which will be selected as the initial feasible solution of QP method employed at the second stage. Around the initial solution, a rational local search range for QP method is then determined, where the nonlinear water level function and tailrace level function can be linearized nearly with high accuracy. The simplified optimization problem is formulated as a QP model with a quadratic generation function and a linear set of constraints, and solved using the available mathematic optimization software package. Simulation is performed on the long term operation of Hongshui River hydropower system which is located in southwest China and consists of 9 built hydropower plants. Results obtained from the proposed approach show a significant increase in the total energy production compared to the results from POA.The paper presents a two-stage approach to cope with the long-term optimal operation of cascaded hydropower systems. This approach combines progressive optimality algorithm (POA) with quadratic programming (QP) to improve the optimization results. POA is used at the first stage to generate a local optimal result, which will be selected as the initial feasible solution of QP method employed at the second stage. Around the initial solution, a rational local search range for QP method is then determined, where the nonlinear water level function and tailrace level function can be linearized nearly with high accuracy. The simplified optimization problem is formulated as a QP model with a quadratic generation function and a linear set of constraints, and solved using the available mathematic optimization software package. Simulation is performed on the long term operation of Hongshui River hydropower system which is located in southwest China and consists of 9 built hydropower plants. Results obtained from the proposed approach show a significant increase in the total energy production compared to the results from POA.
关 键 词:PROGRESSIVE OPTIMALITY Algorithm (POA) QUADRATIC Programming (QP) Optimal Operation Cascaded HYDROPOWER Systems Long-Term
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90