Effects of Advanced Oxidation Processes on the Decomposition Properties of Organic Compounds with Different Molecular Structures in Water  

Effects of Advanced Oxidation Processes on the Decomposition Properties of Organic Compounds with Different Molecular Structures in Water

在线阅读下载全文

作  者:Harufumi Suzuki Shoichi Yamagiwa Sadao Araki Hideki Yamamoto Harufumi Suzuki;Shoichi Yamagiwa;Sadao Araki;Hideki Yamamoto(Department of Chemical, Energy and Environmental Engineering, Faculty of Environmental and Urban Engineering, Kansai University, Osaka, Japan)

机构地区:[1]Department of Chemical, Energy and Environmental Engineering, Faculty of Environmental and Urban Engineering, Kansai University, Osaka, Japan

出  处:《Journal of Water Resource and Protection》2016年第9期823-834,共13页水资源与保护(英文)

摘  要:Studies to decompose persistent organic pollutants in wastewater from chemical factories by using Advanced Oxidation Processes (AOPs) have recently been performed. Oxidation reactions involving ozone and &bull;OH radicals and cleavage caused by UV are the main decomposition reactions that occur in AOPs using ozone and UV. The mechanisms through which organic compounds are decomposed in AOPs are complicated and difficult to understand because various decomposition reactions occur simultaneously. The Total Organic Carbon (TOC) removal efficiencies achieved in several different AOPs were evaluated in this study. The TOC removal efficiencies were different for organic compounds with different chemical structures. The TOC was more effectively removed when aromatic compounds were treated using the O<sub>3</sub>-UV-TiO<sub>2</sub> process than when using the other AOPs, and the TOC was removed more effectively by the O<sub>3</sub>-UV process than by the UV-TiO<sub>2</sub> process. However, the TOC was removed more effectively when open-chain compounds were treated using the UV-TiO<sub>2</sub> process than using the O<sub>3</sub>-UV process, and the UV-TiO<sub>2</sub> and O<sub>3</sub>-UV-TiO<sub>2</sub> processes resulted in similar TOC removal efficiencies. Therefore, it is necessary to use the O<sub>3</sub>-UV-TiO<sub>2</sub> process to decompose aromatic compounds as quickly as possible. On the other hand, the UV-TiO<sub>2</sub> process degraded the open-chain compounds most effectively, and the O<sub>3</sub>-UV-TiO<sub>2</sub> process did not need to decompose open-chain compounds. Moreover, the TOC of aromatic compounds was removed more slowly than that of open-chain compounds. The TOC removal efficiency increased with decreasing the number of carbon atoms in the molecule. The TOC removal efficiencies increased in order of the organic compounds containing methyl groups, aldehyde groups and carboxyl groups. The removal of the TOC when organic compounds were treated using the O<sub>3</sub>-UV-TiO<sub>2</sub> process Studies to decompose persistent organic pollutants in wastewater from chemical factories by using Advanced Oxidation Processes (AOPs) have recently been performed. Oxidation reactions involving ozone and &bull;OH radicals and cleavage caused by UV are the main decomposition reactions that occur in AOPs using ozone and UV. The mechanisms through which organic compounds are decomposed in AOPs are complicated and difficult to understand because various decomposition reactions occur simultaneously. The Total Organic Carbon (TOC) removal efficiencies achieved in several different AOPs were evaluated in this study. The TOC removal efficiencies were different for organic compounds with different chemical structures. The TOC was more effectively removed when aromatic compounds were treated using the O<sub>3</sub>-UV-TiO<sub>2</sub> process than when using the other AOPs, and the TOC was removed more effectively by the O<sub>3</sub>-UV process than by the UV-TiO<sub>2</sub> process. However, the TOC was removed more effectively when open-chain compounds were treated using the UV-TiO<sub>2</sub> process than using the O<sub>3</sub>-UV process, and the UV-TiO<sub>2</sub> and O<sub>3</sub>-UV-TiO<sub>2</sub> processes resulted in similar TOC removal efficiencies. Therefore, it is necessary to use the O<sub>3</sub>-UV-TiO<sub>2</sub> process to decompose aromatic compounds as quickly as possible. On the other hand, the UV-TiO<sub>2</sub> process degraded the open-chain compounds most effectively, and the O<sub>3</sub>-UV-TiO<sub>2</sub> process did not need to decompose open-chain compounds. Moreover, the TOC of aromatic compounds was removed more slowly than that of open-chain compounds. The TOC removal efficiency increased with decreasing the number of carbon atoms in the molecule. The TOC removal efficiencies increased in order of the organic compounds containing methyl groups, aldehyde groups and carboxyl groups. The removal of the TOC when organic compounds were treated using the O<sub>3</sub>-UV-TiO<sub>2</sub> process

关 键 词:Advanced Oxidation Process OZONE Hydroxyl Radical Decomposition Efficiency Water Treatment 

分 类 号:O62[理学—有机化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象