Performance of Thermal Energy Storage Unit Using Solid Ammoniated Salt (CaCl<sub>2</sub>-NH<sub>3</sub>System)  被引量:2

Performance of Thermal Energy Storage Unit Using Solid Ammoniated Salt (CaCl<sub>2</sub>-NH<sub>3</sub>System)

在线阅读下载全文

作  者:Yuki Sakamoto Hideki Yamamoto 

机构地区:[1]Faculty of Environmental and Urban Engineering, Kansai University, Suita, Japan [2]Faculty of Informatics, Naragakuen University, Nara, Japan

出  处:《Natural Resources》2014年第8期337-342,共6页自然资源(英文)

摘  要:The exothermic chemical reaction of CaCl2 (calcium chloride) with NH3 (ammonia) can be utilized as an energy storage system. Since this reaction is a typical gas-solid reaction, the reaction rate is controlled by the heat transfer rate. In order to improve the low heat transfer rate of the ammoniation and the deammoniation of CaCl2, the influence of a heat transfer media (Ti: titanium) on the heat transfer rate of the solid ammoniated salt (CaCl2&#46mNH3) was studied and tested experimentally. The performance tests were carried out under the conditions of various weight ratios of Ti. No decrease of the activation of chemical reaction and no corrosion of experimental apparatus were observed on the repeated runs (≥30 times each). The heat transfer rate of ammoniated salt was greatly improved by adding Ti under the constant pressure (0.5 MPa). The reaction time required for the ammoniation of CaCl2 mixed with Ti was approximately 16% - 54% shorter than that of CaCl2 alone, and the reaction time required for the deammoniation was also approximately 19% - 59% shorter than that of CaCl2 alone.The exothermic chemical reaction of CaCl2 (calcium chloride) with NH3 (ammonia) can be utilized as an energy storage system. Since this reaction is a typical gas-solid reaction, the reaction rate is controlled by the heat transfer rate. In order to improve the low heat transfer rate of the ammoniation and the deammoniation of CaCl2, the influence of a heat transfer media (Ti: titanium) on the heat transfer rate of the solid ammoniated salt (CaCl2&#46mNH3) was studied and tested experimentally. The performance tests were carried out under the conditions of various weight ratios of Ti. No decrease of the activation of chemical reaction and no corrosion of experimental apparatus were observed on the repeated runs (≥30 times each). The heat transfer rate of ammoniated salt was greatly improved by adding Ti under the constant pressure (0.5 MPa). The reaction time required for the ammoniation of CaCl2 mixed with Ti was approximately 16% - 54% shorter than that of CaCl2 alone, and the reaction time required for the deammoniation was also approximately 19% - 59% shorter than that of CaCl2 alone.

关 键 词:Energy Storage Unit Calcium Chloride (CaCl2) Ammonia (NH3) Ammoniated SALT AMMONIATION Heat Transfer Media 

分 类 号:O6[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象