Population Status and Trend of the Maasai Ostrich in the Mid Kenya—Tanzania Borderland  

Population Status and Trend of the Maasai Ostrich in the Mid Kenya—Tanzania Borderland

在线阅读下载全文

作  者:Moses Makonjio Okello John Warui Kiringe Lekishon Kenana Fiesta Warinwa Hanori Maliti Noah Wasilwa Sitati Erastus Kanga Samwel Bakari Stephen Ndambuki Philip Muruthi Nathan Gichohi Edeus Massawe David Kimutai Machoke Mwita Daniel Muteti Moses Makonjio Okello;John Warui Kiringe;Lekishon Kenana;Fiesta Warinwa;Hanori Maliti;Noah Wasilwa Sitati;Erastus Kanga;Samwel Bakari;Stephen Ndambuki;Philip Muruthi;Nathan Gichohi;Edeus Massawe;David Kimutai;Machoke Mwita;Daniel Muteti(SFS Center for Wildlife Management, Nairobi, Kenya;Moi University, Department of Tourism, Eldoret, Kenya;Kenya Wildlife Service, Nairobi, Kenya;African Wildlife Foundation, Nairobi, Kenya;Tanzania Wildlife Research Institute, Arusha, Tanzania)

机构地区:[1]SFS Center for Wildlife Management, Nairobi, Kenya [2]Moi University, Department of Tourism, Eldoret, Kenya [3]Kenya Wildlife Service, Nairobi, Kenya [4]African Wildlife Foundation, Nairobi, Kenya [5]Tanzania Wildlife Research Institute, Arusha, Tanzania

出  处:《Natural Resources》2016年第10期558-579,共22页自然资源(英文)

摘  要:The Maasai ostrich (Struthio camelus) is a the largest avian species in East Africa and though it’s not considered to be a species of conservation concern, some populations are on the decline and this is attributed to bush meat activities, predation on their eggs illegal consumption by humans, habitat destruction and forage competition with other large wildlife species. Climate change is also emerging to be another major threat due to interference with food availability which in turn interferes with the breeding rhythm. Thus, this study examined the population status, trend and distribution of the Maasai ostrich in the Southern Kenya and Northern Tanzania borderland after the 2007 to 2009 drought. The results showed that the species was found across the entire borderland but the Amboseli region had the highest number and density of Maasai ostrich (726.00 ± 100.9;0.08 ± 0.01 ostriches per km<sup>2</sup>), followed by Lake Natron area (330.8 ± 69.8;0.05 ± 0.01 ostriches per km<sup>2</sup>) and the least was in West Kilimanjaro (85.5 ± 18.0;0.03 ± 0.01 ostriches per km<sup>2</sup>). Drought caused a decline in the population of the Maasai ostrich but the Amboseli area experienced the highest decline in density (?13.44 ± 12.61) compared to other borderland sectors. However, the populations increased in most sectors after the drought, and wet season numbers and densities were higher than the dry season. The highest positive increase in number and density was in Lake Natron area (+85.65 ± 91.06) followed by West Kilimanjaro (+68.39 ± 59.54), and the least was in the Magadi area (+22.26 ± 32.05). There is a need to enhance conservation of avian species like the Maasai ostrich other than just focusing on the charismatic species such as the African elephant and black rhino. We therefore recommend joint collaboration in monitoring all large wildlife populations across the Kenya-Tanzania borderland with a view of understanding their status, trend and best management actions that can enhance their conservation.The Maasai ostrich (Struthio camelus) is a the largest avian species in East Africa and though it’s not considered to be a species of conservation concern, some populations are on the decline and this is attributed to bush meat activities, predation on their eggs illegal consumption by humans, habitat destruction and forage competition with other large wildlife species. Climate change is also emerging to be another major threat due to interference with food availability which in turn interferes with the breeding rhythm. Thus, this study examined the population status, trend and distribution of the Maasai ostrich in the Southern Kenya and Northern Tanzania borderland after the 2007 to 2009 drought. The results showed that the species was found across the entire borderland but the Amboseli region had the highest number and density of Maasai ostrich (726.00 ± 100.9;0.08 ± 0.01 ostriches per km<sup>2</sup>), followed by Lake Natron area (330.8 ± 69.8;0.05 ± 0.01 ostriches per km<sup>2</sup>) and the least was in West Kilimanjaro (85.5 ± 18.0;0.03 ± 0.01 ostriches per km<sup>2</sup>). Drought caused a decline in the population of the Maasai ostrich but the Amboseli area experienced the highest decline in density (?13.44 ± 12.61) compared to other borderland sectors. However, the populations increased in most sectors after the drought, and wet season numbers and densities were higher than the dry season. The highest positive increase in number and density was in Lake Natron area (+85.65 ± 91.06) followed by West Kilimanjaro (+68.39 ± 59.54), and the least was in the Magadi area (+22.26 ± 32.05). There is a need to enhance conservation of avian species like the Maasai ostrich other than just focusing on the charismatic species such as the African elephant and black rhino. We therefore recommend joint collaboration in monitoring all large wildlife populations across the Kenya-Tanzania borderland with a view of understanding their status, trend and best management actions that can enhance their conservation.

关 键 词:BORDERLAND Kenya Maasai Ostrich Population Trend and Status Tanzania 

分 类 号:S86[农业科学—野生动物驯养]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象