Imminent Earthquake Forecasting on the Basis of Japan INTERMAGNET Stations, NEIC, NOAA and Tide Code Data Analysis  被引量:3

Imminent Earthquake Forecasting on the Basis of Japan INTERMAGNET Stations, NEIC, NOAA and Tide Code Data Analysis

在线阅读下载全文

作  者:Strachimir Cht. Mavrodiev Strachimir Cht. Mavrodiev(Institute for Nuclear Research and Nuclear Energy, BAS, Sofia, Bulgaria)

机构地区:[1]Institute for Nuclear Research and Nuclear Energy, BAS, Sofia, Bulgaria

出  处:《Open Journal of Earthquake Research》2016年第1期62-78,共17页地震研究(英文)

摘  要:This research presents one possible way for imminent prediction of earthquakes’ magnitude, depth and epicenter coordinates by solving the inverse problem using a data acquisition network system for monitoring, archiving and complex analysis of geophysical variables-precursors. Among many possible precursors the most reliable are the geoelectromagnetic field, the boreholes water level, radon earth-surface concentration, the local heat flow, ionosphere variables, low frequency atmosphere and Earth core waves. The title demonstrates that only geomagnetic data are used in this study. Within the framework of geomagnetic quake approach it is possible to perform an imminent regional seismic activity forecasting on the basis of simple analysis of geomagnetic data which use a new variable SChtM with dimension surface density of energy. Such analysis of Japan Memambetsu, Kakioka, Kanoya INTERMAGNET stations and NEIC earthquakes data, the hypothesis that the “predicted” earthquake is this with biggest value of the variable SChtM permits to formulate an inverse problem (overdetermined algebraic system) for precursor’s signals like a function of earthquake’s magnitude, depth and distance from a monitoring point. Thus, in the case of data acquisition network system existence, which includes monitoring of more than one reliable precursor variables in at least four points distributed within the area with a radius of up to 700 km, there will be enough algebraic equations for calculation of impending earthquake’s magnitude, depth and distance, solving the overdetermined algebraic system.This research presents one possible way for imminent prediction of earthquakes’ magnitude, depth and epicenter coordinates by solving the inverse problem using a data acquisition network system for monitoring, archiving and complex analysis of geophysical variables-precursors. Among many possible precursors the most reliable are the geoelectromagnetic field, the boreholes water level, radon earth-surface concentration, the local heat flow, ionosphere variables, low frequency atmosphere and Earth core waves. The title demonstrates that only geomagnetic data are used in this study. Within the framework of geomagnetic quake approach it is possible to perform an imminent regional seismic activity forecasting on the basis of simple analysis of geomagnetic data which use a new variable SChtM with dimension surface density of energy. Such analysis of Japan Memambetsu, Kakioka, Kanoya INTERMAGNET stations and NEIC earthquakes data, the hypothesis that the “predicted” earthquake is this with biggest value of the variable SChtM permits to formulate an inverse problem (overdetermined algebraic system) for precursor’s signals like a function of earthquake’s magnitude, depth and distance from a monitoring point. Thus, in the case of data acquisition network system existence, which includes monitoring of more than one reliable precursor variables in at least four points distributed within the area with a radius of up to 700 km, there will be enough algebraic equations for calculation of impending earthquake’s magnitude, depth and distance, solving the overdetermined algebraic system.

关 键 词:Earthquake’s Prediction Reliable Earthquake’s Precursors GEOMAGNETISM Inverse Problem 

分 类 号:P31[天文地球—固体地球物理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象