机构地区:[1]Laboratoire de Gophysique, UFR Sciences de lIngnieur, University Iba Der Thiam, Thies, Senegal [2]Laboratoire de Modlisation et de Mcanique des Sols, UFR Sciences de lIngnieur, University Iba Der Thiam, Thies, Senegal
出 处:《Open Journal of Geology》2024年第8期746-759,共14页地质学期刊(英文)
摘 要:This work studies the variability of the relationship between relative permittivity and compaction parameters as a function of certain geotechnical properties for different laterite types. This study allows to purpose the dielectric permittivity as a third compaction parameter allowing to obtain a non destructive control méthod. Preliminary studies on Diack laterite had shown a good correlation. Additional investigations are carried out to verify the possibility of generalizing this correlation to three new laterite careers: Ngoudiane, Yéba and Fandene. To proceed, particle size analysis, Atterberg limits, specific weight tests and compaction according to the modified Proctor test were performed on laterite samples. Using the radar method, experimental permittivities are determined for laterite samples by the point method of propagation times and confirmed by the diffraction hyperbole method. The geotechnical and radar data obtained allowed correlations between permittivity and water content on the one hand and between permittivity and dry density on the other. The results show that the maximum dry density as a function of permittivity corresponds with the optimum Proctor, which confirms the results previously obtained on Diack laterite.This work studies the variability of the relationship between relative permittivity and compaction parameters as a function of certain geotechnical properties for different laterite types. This study allows to purpose the dielectric permittivity as a third compaction parameter allowing to obtain a non destructive control méthod. Preliminary studies on Diack laterite had shown a good correlation. Additional investigations are carried out to verify the possibility of generalizing this correlation to three new laterite careers: Ngoudiane, Yéba and Fandene. To proceed, particle size analysis, Atterberg limits, specific weight tests and compaction according to the modified Proctor test were performed on laterite samples. Using the radar method, experimental permittivities are determined for laterite samples by the point method of propagation times and confirmed by the diffraction hyperbole method. The geotechnical and radar data obtained allowed correlations between permittivity and water content on the one hand and between permittivity and dry density on the other. The results show that the maximum dry density as a function of permittivity corresponds with the optimum Proctor, which confirms the results previously obtained on Diack laterite.
关 键 词:RADAR LATERITE Moisture Content Dry Density PERMITTIVITY Geotechnical Properties
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...