Influence of Rice Straw Incorporation on the Microbial Biomass and Activity in Coastal Saline Soils of Bangladesh  

Influence of Rice Straw Incorporation on the Microbial Biomass and Activity in Coastal Saline Soils of Bangladesh

在线阅读下载全文

作  者:Nasrin Chowdhury Nasrin Chowdhury(Department of Soil Science, University of Chittagong, Chittagong, Bangladesh)

机构地区:[1]Department of Soil Science, University of Chittagong, Chittagong, Bangladesh

出  处:《Open Journal of Soil Science》2016年第10期159-173,共16页土壤科学期刊(英文)

摘  要:Coastal soils of Bangladesh are affected by salinity. This study investigated salinity as a stress factor on coastal soils in Bangladesh. It was also observed if incorporation of rice straw could remediate negative impacts of soil salinity (if any) on microbial activ-ity. The microbial biomass carbon ranged from 137.85 to 614.88 μg/g among the soils (n = 11). Microbial biomass carbon content and number of both cultivable bacteria and fungi decreased in the soils with higher EC<sub>e</sub>s (electrical conductivity). Respiration was measured over 30 days with each soil pre incubated at 50% of water holding capacity. Basal respiration rate as well as soil organic carbon content (r = 0.88, p - 37.73 mS/cm) (12.91 - 16.89 mg CO2/g dry soil) than in the nonsaline soils (0.98 - 2.33 mS/cm) (5.79 - 6.51 mg CO2/g dry soil). Application of rice straw at 0.50%, 1.00%, 1.50% and 2.00% reduced the negative impact of soil salinity especially at higher EC<sub>e</sub>s (6.63 - 37.73 mS/cm). Application of 1.00% rice straw appeared to be acceptable for successful amelioration of saline soils of the study area.Coastal soils of Bangladesh are affected by salinity. This study investigated salinity as a stress factor on coastal soils in Bangladesh. It was also observed if incorporation of rice straw could remediate negative impacts of soil salinity (if any) on microbial activ-ity. The microbial biomass carbon ranged from 137.85 to 614.88 μg/g among the soils (n = 11). Microbial biomass carbon content and number of both cultivable bacteria and fungi decreased in the soils with higher EC<sub>e</sub>s (electrical conductivity). Respiration was measured over 30 days with each soil pre incubated at 50% of water holding capacity. Basal respiration rate as well as soil organic carbon content (r = 0.88, p - 37.73 mS/cm) (12.91 - 16.89 mg CO2/g dry soil) than in the nonsaline soils (0.98 - 2.33 mS/cm) (5.79 - 6.51 mg CO2/g dry soil). Application of rice straw at 0.50%, 1.00%, 1.50% and 2.00% reduced the negative impact of soil salinity especially at higher EC<sub>e</sub>s (6.63 - 37.73 mS/cm). Application of 1.00% rice straw appeared to be acceptable for successful amelioration of saline soils of the study area.

关 键 词:Soil Salinity Osmotic Potential RESPIRATION SUBSTRATE AMELIORATION 

分 类 号:S15[农业科学—土壤学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象