机构地区:[1]Département Gestion des Ressources Naturelles/Systèmes de Production (GRN/SP), Institut de l’Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso [2]Institut du Développement Rural (IDR), Université Nazi BONI, Bobo-Dioulasso, Burkina Faso
出 处:《Open Journal of Soil Science》2021年第4期256-270,共15页土壤科学期刊(英文)
摘 要:We used an ongoing long-term field trial established since 1960 in Burkina Faso, to study the microbial properties of a Ferric Lixisol under various crop management and fertilization regimes. Microbial respiration rate, microbial biomass carbon (MBC) and soil bacteria’s number were assessed in soil samples taken at 0<span style="font-family:;" "=""> </span><span style="font-family:;" "="">-</span><span style="font-family:;" "=""> </span><span style="font-family:;" "="">20 cm depth. The crop management were continuous cropping of sorghum (<i>Sorghum bicolor L</i>.) (S/S) and rotation between sorghum and cowpea (<i>Vigna unguiculata L</i>.) (S/C), while the fertilization regimes were: 1) Control (te);2) Low rate of mineral fertilizer (fm);3) Low rate of mineral fertilizer + sorghum straw restitution (fmr);4) Low rate of mineral fertilizer + low rate of manure (fmo);5) High rate of mineral fertilizer (FM);and vii) High rate of mineral fertilizer + high rate of manure (FMO). The manure is applied every second year. The results indicate that sorghum/cowpea rotation significantly increase MBC and bacteria number as compared to continuous sorghum cropping. MBC ranged from 335.5 to 54.85 μg C g</span><span style="font-family:;" "=""><sup><span style="white-space:nowrap;">−</span><span>1</span></sup><span> soil with S/S and from 457.5 to 86.6 μg C g</span><sup><span style="white-space:nowrap;">−</span><span>1</span></sup><span> soil with S/C. Application of high level of manure and mineral fertilizer increase microbial respiration rate and MBC. The highest MBC was observed with FMO and the lowest with the control. In general, the metabolic quotient (qCO<sub>2</sub>) was negatively impacted by the fertilization and cowpea rotation. For S/S rotation, qCO<sub>2</sub> of the control was 1.5 to 2 times that of the treatments with low mineral fertilizer (fmr, fmo and fm) and 3 times that of the high rate of fertilization (FM and FMO). With S/C rotation, qCO<sub>2</sub> of the control was 2 times of that fmr, FM We used an ongoing long-term field trial established since 1960 in Burkina Faso, to study the microbial properties of a Ferric Lixisol under various crop management and fertilization regimes. Microbial respiration rate, microbial biomass carbon (MBC) and soil bacteria’s number were assessed in soil samples taken at 0<span style="font-family:;" "=""> </span><span style="font-family:;" "="">-</span><span style="font-family:;" "=""> </span><span style="font-family:;" "="">20 cm depth. The crop management were continuous cropping of sorghum (<i>Sorghum bicolor L</i>.) (S/S) and rotation between sorghum and cowpea (<i>Vigna unguiculata L</i>.) (S/C), while the fertilization regimes were: 1) Control (te);2) Low rate of mineral fertilizer (fm);3) Low rate of mineral fertilizer + sorghum straw restitution (fmr);4) Low rate of mineral fertilizer + low rate of manure (fmo);5) High rate of mineral fertilizer (FM);and vii) High rate of mineral fertilizer + high rate of manure (FMO). The manure is applied every second year. The results indicate that sorghum/cowpea rotation significantly increase MBC and bacteria number as compared to continuous sorghum cropping. MBC ranged from 335.5 to 54.85 μg C g</span><span style="font-family:;" "=""><sup><span style="white-space:nowrap;">−</span><span>1</span></sup><span> soil with S/S and from 457.5 to 86.6 μg C g</span><sup><span style="white-space:nowrap;">−</span><span>1</span></sup><span> soil with S/C. Application of high level of manure and mineral fertilizer increase microbial respiration rate and MBC. The highest MBC was observed with FMO and the lowest with the control. In general, the metabolic quotient (qCO<sub>2</sub>) was negatively impacted by the fertilization and cowpea rotation. For S/S rotation, qCO<sub>2</sub> of the control was 1.5 to 2 times that of the treatments with low mineral fertilizer (fmr, fmo and fm) and 3 times that of the high rate of fertilization (FM and FMO). With S/C rotation, qCO<sub>2</sub> of the control was 2 times of that fmr, FM
关 键 词:Microbial Respiration Bacteria Quantification COMPOST Crop Rotation SORGHUM COWPEA
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...