Hyperspectral Image Classification Based on Hierarchical SVM Algorithm for Improving Overall Accuracy  

Hyperspectral Image Classification Based on Hierarchical SVM Algorithm for Improving Overall Accuracy

在线阅读下载全文

作  者:Lida Hosseini Ramin Shaghaghi Kandovan 

机构地区:[1]Department of Communications, College of Electrical Engineering, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran

出  处:《Advances in Remote Sensing》2017年第1期66-75,共10页遥感技术进展(英文)

摘  要:One of the most challenges in the remote sensing applications is Hyperspectral image classification. Hyperspectral image classification accuracy depends on the number of classes, training samples and features space dimension. The classification performance degrades to increase the number of classes and reduce the number of training samples. The increase in the number of feature follows a considerable rise in data redundancy and computational complexity leads to the classification accuracy confusion. In order to deal with the Hughes phenomenon and using hyperspectral image data, a hierarchical algorithm based on SVM is proposed in this paper. In the proposed hierarchical algorithm, classification is accomplished in two levels. Firstly, the clusters included similar classes is defined according to Euclidean distance between the class centers. The SVM algorithm is accomplished on clusters with selected features. In next step, classes in every cluster are discriminated based on SVM algorithm and the fewer features. The features are selected based on correlation criteria between the classes, determined in every level, and features. The numerical results show that the accuracy classification is improved using the proposed Hierarchical SVM rather than SVM. The number of bands used for classification was reduced to 50, while the classification accuracy increased from 73% to 80% with applying the conventional SVM and the proposed Hierarchical SVM algorithm, respectively.One of the most challenges in the remote sensing applications is Hyperspectral image classification. Hyperspectral image classification accuracy depends on the number of classes, training samples and features space dimension. The classification performance degrades to increase the number of classes and reduce the number of training samples. The increase in the number of feature follows a considerable rise in data redundancy and computational complexity leads to the classification accuracy confusion. In order to deal with the Hughes phenomenon and using hyperspectral image data, a hierarchical algorithm based on SVM is proposed in this paper. In the proposed hierarchical algorithm, classification is accomplished in two levels. Firstly, the clusters included similar classes is defined according to Euclidean distance between the class centers. The SVM algorithm is accomplished on clusters with selected features. In next step, classes in every cluster are discriminated based on SVM algorithm and the fewer features. The features are selected based on correlation criteria between the classes, determined in every level, and features. The numerical results show that the accuracy classification is improved using the proposed Hierarchical SVM rather than SVM. The number of bands used for classification was reduced to 50, while the classification accuracy increased from 73% to 80% with applying the conventional SVM and the proposed Hierarchical SVM algorithm, respectively.

关 键 词:FEATURE Reduction METHODS CLUSTERING METHODS HYPERSPECTRAL Image Classification Support VECTOR Machine 

分 类 号:TP39[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象