检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Rose Yang Mulama Jephter Ongige Ondieki Rose Yang Mulama;Jephter Ongige Ondieki(Department of Physics, University of Nairobi, Nairobi, Kenya;School of Aerospace Engineering, Sapienza University of Rome, Roma, Italy)
机构地区:[1]Department of Physics, University of Nairobi, Nairobi, Kenya [2]School of Aerospace Engineering, Sapienza University of Rome, Roma, Italy
出 处:《Advances in Remote Sensing》2023年第3期88-98,共11页遥感技术进展(英文)
摘 要:The present work assessed the expansion and fluctuation of Lake Nakuru in Kenya by using satellite data and information. Surface water magnitude was measured from optical sensors, such as Landsat. ENVI software was used to process and analyze data from the satellite images. The data was then used to create shapefile to get the area of the lake only. The shapefiles were classified using both Supervised and Unsupervised classification, and the area of the lake was obtained in hectares. The obtained area in hectares was recorded in a table and graphs were plotted to show the trend of the lake in the years 1972-2019. Furthermore, correlation was done by assuming the area of the shapefile before any classification is more accurate, therefore it was compared with the other results obtained by using different methods. Maximum likelihood gave the best correlation values. For R<sup>2</sup> it gave 0.8627 and R was 0.9312.The present work assessed the expansion and fluctuation of Lake Nakuru in Kenya by using satellite data and information. Surface water magnitude was measured from optical sensors, such as Landsat. ENVI software was used to process and analyze data from the satellite images. The data was then used to create shapefile to get the area of the lake only. The shapefiles were classified using both Supervised and Unsupervised classification, and the area of the lake was obtained in hectares. The obtained area in hectares was recorded in a table and graphs were plotted to show the trend of the lake in the years 1972-2019. Furthermore, correlation was done by assuming the area of the shapefile before any classification is more accurate, therefore it was compared with the other results obtained by using different methods. Maximum likelihood gave the best correlation values. For R<sup>2</sup> it gave 0.8627 and R was 0.9312.
关 键 词:Remote Sensing LANDSAT Soil Erosion Supervised Classification
分 类 号:P20[天文地球—测绘科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46