机构地区:[1]Department of Social and Environmental Forestry, University of Ibadan, Ibadan, Nigeria [2]Tropical Forests and People Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD, Australia [3]Faculty of Forest Sciences and Forest Ecology, Georg-August-Universitä,t Gö,ttingen, Gö,ttingen, Germany
出 处:《Advances in Remote Sensing》2023年第4期123-144,共22页遥感技术进展(英文)
摘 要:Land use Land cover (LULC) has undergone progressive changes worldwide over the years. However, there is limited information available about these changes in Oba Hills Forest Reserve, Nigeria. The existing spatial analysis of the forest excluded important land use classes like settlements. Therefore, this study aimed at assessing the dynamics of LULC in Oba Hills Forest Reserve between 1987 and 2019. Images from Landsat 5, Landsat 7, and Landsat 8 for the years 1987, 2001, 2013, and 2019 were obtained and subjected to preprocessing and classification using the maximum likelihood algorithm, change detection, and Normalized Differential Vegetation Index (NDVI). The coordinates of specific benchmark locations and other points were acquired for ground-truthing and developing Digital Elevation Model (DEM). Three distinct LULC classes were identified: forest, bare land (including open spaces, agriculture, rocks, and grasslands), and built-up areas. The forest cover in the reserve gradually decreased from 56% in 1987 to 47% in 2019, resulting in a total area loss of 455.4 hectares. Correspondingly, the other LULC classes experienced exponential expansion. Bare land increased from 44% in 1987 to 52% in 2019, while the built-up area expanded by 57.28 hectares. These changes are attributed to prevalent anthropogenic activities such as agriculture, grazing, logging, firewood collection, and population growth within the catchment area. The declining NDVI values in the forest reserve, from 0.52 to 0.44 within the years of assessment, further substantiated the substantial loss of forest cover. The DEM and topographical map highlighted notable steep slopes and elevations of up to over 550 m above sea level (asl) within the reserve, which have implications for forest growth and dynamics. In conclusion, this study reveals extensive rates of forest cover changes into bare land, primarily for agriculture, and settlements, and offers further recommendations to reverse the trend.Land use Land cover (LULC) has undergone progressive changes worldwide over the years. However, there is limited information available about these changes in Oba Hills Forest Reserve, Nigeria. The existing spatial analysis of the forest excluded important land use classes like settlements. Therefore, this study aimed at assessing the dynamics of LULC in Oba Hills Forest Reserve between 1987 and 2019. Images from Landsat 5, Landsat 7, and Landsat 8 for the years 1987, 2001, 2013, and 2019 were obtained and subjected to preprocessing and classification using the maximum likelihood algorithm, change detection, and Normalized Differential Vegetation Index (NDVI). The coordinates of specific benchmark locations and other points were acquired for ground-truthing and developing Digital Elevation Model (DEM). Three distinct LULC classes were identified: forest, bare land (including open spaces, agriculture, rocks, and grasslands), and built-up areas. The forest cover in the reserve gradually decreased from 56% in 1987 to 47% in 2019, resulting in a total area loss of 455.4 hectares. Correspondingly, the other LULC classes experienced exponential expansion. Bare land increased from 44% in 1987 to 52% in 2019, while the built-up area expanded by 57.28 hectares. These changes are attributed to prevalent anthropogenic activities such as agriculture, grazing, logging, firewood collection, and population growth within the catchment area. The declining NDVI values in the forest reserve, from 0.52 to 0.44 within the years of assessment, further substantiated the substantial loss of forest cover. The DEM and topographical map highlighted notable steep slopes and elevations of up to over 550 m above sea level (asl) within the reserve, which have implications for forest growth and dynamics. In conclusion, this study reveals extensive rates of forest cover changes into bare land, primarily for agriculture, and settlements, and offers further recommendations to reverse the trend.
关 键 词:LANDSAT Normalized Differential Vegetation Index Change Detection DEFORESTATION Digital Elevation Model
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...