机构地区:[1]Laboratory LIP2, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisie [2]General Directorate of Technological Studies, Higher Institute of Technological Studies of Rades, Ben Arous, Tunisia [3]University of Carthage, National Institute of Applied Science and Technology, Tunis, Tunisie [4]University of Manouba, Higher Institute of Multimedia Arts of Manouba, Manouba, Tunisie
出 处:《International Journal of Communications, Network and System Sciences》2017年第11期261-281,共21页通讯、网络与系统学国际期刊(英文)
摘 要:Multiprocessor System on Chip (MPSoC) technology presents an interesting solution to reduce the computational time of complex applications such as multimedia applications. Implementing the new High Efficiency Video Coding (HEVC/h.265) codec on the MPSoC architecture becomes an interesting research point that can reduce its algorithmic complexity and resolve the real time constraints. The implementation consists of a set of steps that compose the Co-design flow of an embedded system design process. One of the first anf key steps of a Co-design flow is the modeling phase which allows designers to make best architectural choices in order to meet user requirements and platform constraints. Multimedia applications such as HEVC decoder are complex applications that demand increasing degrees of agility and flexibility. These applications are usually modeling by dataflow techniques. Several extensions with several schedules techniques of dataflow model of computation have been proposed to support dynamic behavior changes while preserving static analyzability. In this paper, the HEVC/h.265 video decoder is modeled with SADF based FSM in order to solve problems of placing and scheduling this application on an embedded architecture. In the modeling step, a high-level performance analysis is performed to find an optimal balance between the decoding efficiency and the implementation cost, thereby reducing the complexity of the system. The case study in this case works with the HEVC/h.265 decoder that runs on the Xilinx Zedboard platform, which offers a real environment of experimentation.Multiprocessor System on Chip (MPSoC) technology presents an interesting solution to reduce the computational time of complex applications such as multimedia applications. Implementing the new High Efficiency Video Coding (HEVC/h.265) codec on the MPSoC architecture becomes an interesting research point that can reduce its algorithmic complexity and resolve the real time constraints. The implementation consists of a set of steps that compose the Co-design flow of an embedded system design process. One of the first anf key steps of a Co-design flow is the modeling phase which allows designers to make best architectural choices in order to meet user requirements and platform constraints. Multimedia applications such as HEVC decoder are complex applications that demand increasing degrees of agility and flexibility. These applications are usually modeling by dataflow techniques. Several extensions with several schedules techniques of dataflow model of computation have been proposed to support dynamic behavior changes while preserving static analyzability. In this paper, the HEVC/h.265 video decoder is modeled with SADF based FSM in order to solve problems of placing and scheduling this application on an embedded architecture. In the modeling step, a high-level performance analysis is performed to find an optimal balance between the decoding efficiency and the implementation cost, thereby reducing the complexity of the system. The case study in this case works with the HEVC/h.265 decoder that runs on the Xilinx Zedboard platform, which offers a real environment of experimentation.
关 键 词:HEVC H.265 Performance Estimation SDF SADF SADF-FSM Embedded Systems
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...