检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Saranya Vaithilingam Santhosh Aradhya Mohan Shankar Saranya Vaithilingam;Santhosh Aradhya Mohan Shankar(Department of Information Technology, University of the Cumberlands, Williamsburg, KY, USA)
机构地区:[1]Department of Information Technology, University of the Cumberlands, Williamsburg, KY, USA
出 处:《International Journal of Intelligence Science》2024年第2期49-57,共9页智能科学国际期刊(英文)
摘 要:The widespread adoption of QR codes has revolutionized various industries, streamlined transactions and improved inventory management. However, this increased reliance on QR code technology also exposes it to potential security risks that malicious actors can exploit. QR code Phishing, or “Quishing”, is a type of phishing attack that leverages QR codes to deceive individuals into visiting malicious websites or downloading harmful software. These attacks can be particularly effective due to the growing popularity and trust in QR codes. This paper examines the importance of enhancing the security of QR codes through the utilization of artificial intelligence (AI). The abstract investigates the integration of AI methods for identifying and mitigating security threats associated with QR code usage. By assessing the current state of QR code security and evaluating the effectiveness of AI-driven solutions, this research aims to propose comprehensive strategies for strengthening QR code technology’s resilience. The study contributes to discussions on secure data encoding and retrieval, providing valuable insights into the evolving synergy between QR codes and AI for the advancement of secure digital communication.The widespread adoption of QR codes has revolutionized various industries, streamlined transactions and improved inventory management. However, this increased reliance on QR code technology also exposes it to potential security risks that malicious actors can exploit. QR code Phishing, or “Quishing”, is a type of phishing attack that leverages QR codes to deceive individuals into visiting malicious websites or downloading harmful software. These attacks can be particularly effective due to the growing popularity and trust in QR codes. This paper examines the importance of enhancing the security of QR codes through the utilization of artificial intelligence (AI). The abstract investigates the integration of AI methods for identifying and mitigating security threats associated with QR code usage. By assessing the current state of QR code security and evaluating the effectiveness of AI-driven solutions, this research aims to propose comprehensive strategies for strengthening QR code technology’s resilience. The study contributes to discussions on secure data encoding and retrieval, providing valuable insights into the evolving synergy between QR codes and AI for the advancement of secure digital communication.
关 键 词:Artificial Intelligence Cyber Security QR Codes Quishing AI Framework Machine Learning AI-Enhanced Security
分 类 号:TN9[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.21