检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Lianjun Zhang Lifang Zhao Gang Liu Lianjun Zhang;Lifang Zhao;Gang Liu(School of Computer, Shandong University of Technology, Zibo, China;Library, Shandong University of Technology, Zibo, China)
机构地区:[1]School of Computer, Shandong University of Technology, Zibo, China [2]Library, Shandong University of Technology, Zibo, China
出 处:《Journal of Computer and Communications》2021年第1期1-9,共9页电脑和通信(英文)
摘 要:The Sensitivity Encoding (SENSE) parallel reconstruction scheme for magnetic resonance imaging (MRI) is implemented with non-cartesian sampled k-space trajectories in this paper. SENSE has the special capability to reduce the scanning time for MRI experiments while maintaining the image resolution with under-sampling data sets. In this manner, it has become an increasingly popular technique for multiple MRI data acquisition and image reconstruction schemes. The gridding algorithm is also implemented with SENSE due to its ability in evaluating forward and adjoin operator with non-cartesian sampled data. In this paper, the sensitivity map profile, field map information and the spiral k-space data collected from an array of receiver coils are used to reconstruct unaliased images from under-sampled data. The performance of SENSE with real data set identifies the computational issues to be improved for researched.The Sensitivity Encoding (SENSE) parallel reconstruction scheme for magnetic resonance imaging (MRI) is implemented with non-cartesian sampled k-space trajectories in this paper. SENSE has the special capability to reduce the scanning time for MRI experiments while maintaining the image resolution with under-sampling data sets. In this manner, it has become an increasingly popular technique for multiple MRI data acquisition and image reconstruction schemes. The gridding algorithm is also implemented with SENSE due to its ability in evaluating forward and adjoin operator with non-cartesian sampled data. In this paper, the sensitivity map profile, field map information and the spiral k-space data collected from an array of receiver coils are used to reconstruct unaliased images from under-sampled data. The performance of SENSE with real data set identifies the computational issues to be improved for researched.
关 键 词:Parallel Imaging SENSE GRIDDING K-SPACE MRI
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28