检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Tamer Omar Thomas Ketseoglou Omar Naffaa Asatur Marzvanyan Connor Carr Tamer Omar;Thomas Ketseoglou;Omar Naffaa;Asatur Marzvanyan;Connor Carr(Department of Electrical and Computer Engineering, California State Polytechnic University, Pomona, USA)
出 处:《Journal of Computer and Communications》2021年第6期1-23,共23页电脑和通信(英文)
摘 要:In order to meet key requirements imposed by transitioning to a 5G network, new network management techniques must be employed in order to increase network reliability and efficiency. Most notably, it is important that a Self-Organizing Network (SON) is able to recover autonomously from network failure or congestion through Self-Healing procedures (<i>i.e.</i> autonomous detection, diagnosis, and correction). This paper aims to develop a self-healing algorithm that can effectively “heal” a 5G network by testing a proposed self-healing algorithm within a network simulator that adheres to current 5G standards. The simulator developed in this paper aims to model a network of small cells that can inherit one of multiple states (healthy, congested, and failing) to validate the effectiveness of a programmed self-healing algorithm in recovering a simulated network. Results show that the application of a self-healing in a network is able to resolve issues related to Quality of Service (QoS) and reduced network data rates in portions of a network that are in a partially congested or failing state.In order to meet key requirements imposed by transitioning to a 5G network, new network management techniques must be employed in order to increase network reliability and efficiency. Most notably, it is important that a Self-Organizing Network (SON) is able to recover autonomously from network failure or congestion through Self-Healing procedures (<i>i.e.</i> autonomous detection, diagnosis, and correction). This paper aims to develop a self-healing algorithm that can effectively “heal” a 5G network by testing a proposed self-healing algorithm within a network simulator that adheres to current 5G standards. The simulator developed in this paper aims to model a network of small cells that can inherit one of multiple states (healthy, congested, and failing) to validate the effectiveness of a programmed self-healing algorithm in recovering a simulated network. Results show that the application of a self-healing in a network is able to resolve issues related to Quality of Service (QoS) and reduced network data rates in portions of a network that are in a partially congested or failing state.
关 键 词:SELF-HEALING MIMO-Beamforming Millimeter Wavelength Base Station LATENCY
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222