检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Guowen Liu Inmaculada Arnedillo-Sánchez Zhenshuo Chen Guowen Liu;Inmaculada Arnedillo-Sánchez;Zhenshuo Chen(Trinity College Dublin, Dublin, Ireland;Dublin City University, Dublin, Ireland)
机构地区:[1]Trinity College Dublin, Dublin, Ireland [2]Dublin City University, Dublin, Ireland
出 处:《Journal of Computer and Communications》2023年第2期8-19,共12页电脑和通信(英文)
摘 要:The housing crisis in Ireland has rapidly grown in recent years. To make a more significant profit, many landlords are no longer renting out their houses under long-term tenancies but under short-term tenancies. Regulating rentals in Rent Pressure Zones with the highest and rising rents is becoming a tricky issue. In this paper, we develop a breach identifier to check short-term rentals located in Rent Pressure Zones with potential breaches only using publicly available data from Airbnb (an online marketplace focused on short-term home-stays) and Irish government websites. First, we use a Residual Neural Network to filter out outdoor landscape photos that negatively impact identifying whether an owner has multiple rentals in a Rent Pressure Zone. Second, a Siamese Neural Network is used to compare the similarity of indoor photos to determine if multiple rental posts correspond to the same residence. Next, we use the Haversine algorithm to locate short-term rentals within a circle centered on the coordinate of a permit. Short-term rentals with a permit will not be restricted. Finally, we improve the occupancy estimation model combined with sentiment analysis, which may provide higher accuracy.The housing crisis in Ireland has rapidly grown in recent years. To make a more significant profit, many landlords are no longer renting out their houses under long-term tenancies but under short-term tenancies. Regulating rentals in Rent Pressure Zones with the highest and rising rents is becoming a tricky issue. In this paper, we develop a breach identifier to check short-term rentals located in Rent Pressure Zones with potential breaches only using publicly available data from Airbnb (an online marketplace focused on short-term home-stays) and Irish government websites. First, we use a Residual Neural Network to filter out outdoor landscape photos that negatively impact identifying whether an owner has multiple rentals in a Rent Pressure Zone. Second, a Siamese Neural Network is used to compare the similarity of indoor photos to determine if multiple rental posts correspond to the same residence. Next, we use the Haversine algorithm to locate short-term rentals within a circle centered on the coordinate of a permit. Short-term rentals with a permit will not be restricted. Finally, we improve the occupancy estimation model combined with sentiment analysis, which may provide higher accuracy.
关 键 词:Housing Crisis Short-Term Rental Irish Rent Pressure Zone Image Recognition Breach Identification
分 类 号:TN9[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7