Evaluation of Linear Precoding Schemes for Cooperative Multi-Cell MU MIMO in Future Mobile Communication Systems  

Evaluation of Linear Precoding Schemes for Cooperative Multi-Cell MU MIMO in Future Mobile Communication Systems

在线阅读下载全文

作  者:Juma Said Ally Juma Said Ally(Department of Electronics and Telecommunication Engineering, College of Information and Communication Technology, Mbeya University of Science and Technology, Mbeya, Tanzania)

机构地区:[1]Department of Electronics and Telecommunication Engineering, College of Information and Communication Technology, Mbeya University of Science and Technology, Mbeya, Tanzania

出  处:《Journal of Computer and Communications》2023年第6期28-42,共15页电脑和通信(英文)

摘  要:In Mobile Communication Systems, inter-cell interference becomes one of the challenges that degrade the system’s performance, especially in the region with massive mobile users. The linear precoding schemes were proposed to mitigate interferences between the base stations (inter-cell). These schemes are categorized into linear and non-linear;this study focused on linear precoding schemes, which are grounded into three types, namely Zero Forcing (ZF), Block Diagonalization (BD), and Signal Leakage Noise Ratio (SLNR). The study included the Cooperative Multi-cell Multi Input Multi Output (MIMO) System, whereby each Base Station serves more than one mobile station and all Base Stations on the system are assisted by each other by shared the Channel State Information (CSI). Based on the Multi-Cell Multiuser MIMO system, each Base Station on the cell is intended to maximize the data transmission rate by its mobile users by increasing the Signal Interference to Noise Ratio after the interference has been mitigated due to the usefully of linear precoding schemes on the transmitter. Moreover, these schemes used different approaches to mitigate interference. This study mainly concentrates on evaluating the performance of these schemes through the channel distribution models such as Ray-leigh and Rician included in the presence of noise errors. The results show that the SLNR scheme outperforms ZF and BD schemes overall scenario. This implied that when the value of SNR increased the performance of SLNR increased by 21.4% and 45.7% for ZF and BD respectively.In Mobile Communication Systems, inter-cell interference becomes one of the challenges that degrade the system’s performance, especially in the region with massive mobile users. The linear precoding schemes were proposed to mitigate interferences between the base stations (inter-cell). These schemes are categorized into linear and non-linear;this study focused on linear precoding schemes, which are grounded into three types, namely Zero Forcing (ZF), Block Diagonalization (BD), and Signal Leakage Noise Ratio (SLNR). The study included the Cooperative Multi-cell Multi Input Multi Output (MIMO) System, whereby each Base Station serves more than one mobile station and all Base Stations on the system are assisted by each other by shared the Channel State Information (CSI). Based on the Multi-Cell Multiuser MIMO system, each Base Station on the cell is intended to maximize the data transmission rate by its mobile users by increasing the Signal Interference to Noise Ratio after the interference has been mitigated due to the usefully of linear precoding schemes on the transmitter. Moreover, these schemes used different approaches to mitigate interference. This study mainly concentrates on evaluating the performance of these schemes through the channel distribution models such as Ray-leigh and Rician included in the presence of noise errors. The results show that the SLNR scheme outperforms ZF and BD schemes overall scenario. This implied that when the value of SNR increased the performance of SLNR increased by 21.4% and 45.7% for ZF and BD respectively.

关 键 词:Precoding Schemes Cooperative Networks Interference Multi-Input Multi-Output (MIMO) Multi-Cell and Multiuser 

分 类 号:TN9[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象