Film and Television Website Scores Authenticity Verification Based on the Emotional Analysis  

Film and Television Website Scores Authenticity Verification Based on the Emotional Analysis

在线阅读下载全文

作  者:Weiyu Tong Weiyu Tong(Aberdeen Institute of Data Science and Artificial Intelligence, South China Normal University, Foshan, China)

机构地区:[1]Aberdeen Institute of Data Science and Artificial Intelligence, South China Normal University, Foshan, China

出  处:《Journal of Computer and Communications》2024年第2期231-245,共15页电脑和通信(英文)

摘  要:Sentiment analysis is a method to identify and understand the emotion in the text through NLP and text analysis. In the era of information technology, there is often a certain error between the comments on the movie website and the actual score of the movie, and sentiment analysis technology provides a new way to solve this problem. In this paper, Python is used to obtain the movie review data from the Douban platform, and the model is constructed and trained by using naive Bayes and Bi-LSTM. According to the index, a better Bi-LSTM model is selected to classify the emotion of users’ movie reviews, and the classification results are scored according to the classification results, and compared with the real ratings on the website. According to the error of the final comparison results, the feasibility of this technology in the scoring direction of film reviews is being verified. By applying this technology, the phenomenon of film rating distortion in the information age can be prevented and the rights and interests of film and television works can be safeguarded.Sentiment analysis is a method to identify and understand the emotion in the text through NLP and text analysis. In the era of information technology, there is often a certain error between the comments on the movie website and the actual score of the movie, and sentiment analysis technology provides a new way to solve this problem. In this paper, Python is used to obtain the movie review data from the Douban platform, and the model is constructed and trained by using naive Bayes and Bi-LSTM. According to the index, a better Bi-LSTM model is selected to classify the emotion of users’ movie reviews, and the classification results are scored according to the classification results, and compared with the real ratings on the website. According to the error of the final comparison results, the feasibility of this technology in the scoring direction of film reviews is being verified. By applying this technology, the phenomenon of film rating distortion in the information age can be prevented and the rights and interests of film and television works can be safeguarded.

关 键 词:Bi-LSTM Model Film Review Emotion Analysis Naive Bayes PYTHON Data Crawl 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象